Finite Element Analysis

Frame Equations Example

by

Dr. Gul Ahmed Jokhio
Faculty of Civil Engineering and Earth Resources okhio@ump.edu.my

Lesson Outcomes

- At the end of this lesson, the student should be able to:
- Apply the element equations for beam-columns to a frame example
- Evaluate the unknown deformations of a frame structure using Finite Element Analysis

Example Frame Structure

- Find the unknown deformations at nodes 1 and 2 for the frame
- Use:
- $E=200 G P a$
- $A=0.0112 m^{2}$
- $I=2.39 \times 10^{-5} m^{2}$

Discretization

- The structure is discretized into 3 nodes and 2 elements
- Element 1 is connected to nodes 1 and 2 and element 2 is connected to nodes 2 and 3
- Node 1 has a 60kN load acting downwards
- Node 3 is fixed
- Length of element 1 is 3 m and that of element 2 is 6 m

Stiffness Matrix for Element 1

- $\theta=0, C=1, S=0$
- $\frac{E}{L}=\frac{2 \times 10^{11}}{3}=6.67 \times 10^{10}$
- $\frac{12 I}{L^{2}}=\frac{12 \times 2.39 \times 10^{-5}}{3^{2}}=3.19 \times 10^{-5}$
- $\frac{6 I}{L}=4.78 \times 10^{-5}$
- $4 I=9.56 \times 10^{-5}$
- $2 I=4.78 \times 10^{-5}$

Stiffness Matrix for Element 1 (Continued)

- $\quad[k]=6.67 \times$

$$
10^{10}\left[\begin{array}{cccccc}
0.0112 & 0 & 0 & -0.0112 & 0 & 0 \\
0 & 3.19 \times 10^{-5} & 4.78 \times 10^{-5} & 0 & -3.19 \times 10^{-5} & 4.78 \times 10^{-5} \\
0 & 4.78 \times 10^{-5} & 9.56 \times 10^{-5} & 0 & -4.78 \times 10^{-5} & 4.78 \times 10^{-5} \\
-0.0112 & 0 & 0 & 0.0112 & 0 & 0 \\
0 & -3.19 \times 10^{-5} & 4.78 \times 10^{-5} & 0 & 3.19 \times 10^{-5} & 4.78 \times 10^{-5} \\
0 & -4.78 \times 10^{-5} & 4.78 \times 10^{-5} & 0 & 4.78 \times 10^{-5} & 9.56 \times 10^{-5}
\end{array}\right]
$$

Stiffness Matrix for Element 2

- $\theta=270, C=0, S=-1$
- $\frac{E}{L}=\frac{2 \times 10^{11}}{6}=3.33 \times 10^{10}$
- $\frac{12 I}{L^{2}}=\frac{12 \times 2.39 \times 10^{-5}}{6^{2}}=7.97 \times 10^{-6}$
- $\frac{6 I}{L}=2.39 \times 10^{-5}$
- $4 I=9.56 \times 10^{-5}$
- $2 I=4.78 \times 10^{-5}$

Stiffness Matrix for Element 2 (Continued)

- $\quad[k]=3.33 \times$

$$
10^{10}\left[\begin{array}{cccccc}
7.97 \times 10^{-6} & 0 & 2.39 \times 10^{-5} & -7.97 \times 10^{-6} & 0 & 2.39 \times 10^{-5} \\
0 & 0.0112 & 0 & 0 & -0.0112 & 0 \\
2.39 \times 10^{-5} & 0 & 9.56 \times 10^{-5} & -2.39 \times 10^{-5} & 0 & 4.78 \times 10^{-5} \\
-7.97 \times 10^{-6} & 0 & 2.39 \times 10^{-5} & 7.97 \times 10^{-6} & 0 & 2.39 \times 10^{-5} \\
0 & -0.0112 & 0 & 0 & 0.0112 & 0 \\
-2.39 \times 10^{-5} & 0 & 4.78 \times 10^{-5} & 2.39 \times 10^{-5} & 0 & 9.56 \times 10^{-5}
\end{array}\right]
$$

- Since node 3 is fixed, we only need the first part of this matrix for assembly
- $[k]=3.33 \times 10^{10}\left[\begin{array}{ccc}7.97 \times 10^{-6} & 0 & 2.39 \times 10^{-5} \\ 0 & 0.0112 & 0 \\ 2.39 \times 10^{-5} & 0 & 9.56 \times 10^{-5}\end{array}\right]$

Assembly of Stiffness Matrix (Including Boundary Conditions)

- $\quad[k]=6.67 \times$

$$
10^{10}\left[\begin{array}{cccccc}
0.0112 & 0 & 0 & -0.0112 & 0 & 0 \\
0 & 3.19 \times 10^{-5} & 4.78 \times 10^{-5} & 0 & -3.19 \times 10^{-5} & 4.78 \times 10^{-5} \\
0 & 4.78 \times 10^{-5} & 9.56 \times 10^{-5} & 0 & -4.78 \times 10^{-5} & 4.78 \times 10^{-5} \\
-0.0112 & 0 & 0 & 0.0112 & 0 & 1.2 \times 10^{-5} \\
0 & -3.19 \times 10^{-5} & 4.78 \times 10^{-5} & 0 & 0.0112 & 4.78 \times 10^{-5} \\
0 & -4.78 \times 10^{-5} & 4.78 \times 10^{-5} & 1.2 \times 10^{-5} & 4.78 \times 10^{-5} & 1.43 \times 10^{-4}
\end{array}\right]
$$

System of Equations

- The system of Equations is given as:
$\cdot\left\{\begin{array}{l}f_{1 x} \\ f_{1 y} \\ m_{1} \\ f_{2 x} \\ f_{2 y} \\ m_{2}\end{array}\right\}=[K]\left\{\begin{array}{c}u_{1} \\ v_{1} \\ m_{1} \\ u_{2} \\ v_{2} \\ m_{2}\end{array}\right\}$
$\left.\left.\begin{array}{ll}\text { - } & \left\{\begin{array}{c}0 \\ -60000 \\ 0 \\ 0 \\ 0\end{array}\right\}=6.67 \times \\ 0\end{array}\right\} \begin{array}{cccccc}0.0112 & 0 & 0 & -0.0112 & 0 & 0 \\ 0 & 3.19 \times 10^{-5} & 4.78 \times 10^{-5} & 0 & -3.19 \times 10^{-5} & 4.78 \times 10^{-5} \\ 0 & 4.78 \times 10^{-5} & 9.56 \times 10^{-5} & 0 & -4.78 \times 10^{-5} & 4.78 \times 10^{-5} \\ -0.0112 & 0 & 0 & 0.0112 & 0 & 1.2 \times 10^{-5} \\ 0 & -3.19 \times 10^{-5} & 4.78 \times 10^{-5} & 0 & 0.0112 & 4.78 \times 10^{-5} \\ 0 & -4.78 \times 10^{-5} & 4.78 \times 10^{-5} & 1.2 \times 10^{-5} & 4.78 \times 10^{-5} & 1.43 \times 10^{-4}\end{array}\right]\left\{\begin{array}{l}u_{1} \\ v_{1} \\ \phi_{1} \\ u_{2} \\ v_{2} \\ \phi_{2}\end{array}\right\}$

Solution

- After Solution of the system of equations, we get:
- $\left\{\begin{array}{l}u_{1} \\ v_{1} \\ \phi_{1} \\ u_{2} \\ v_{2} \\ \phi_{2}\end{array}\right\}=\left\{\begin{array}{c}0.081 \\ -0.032 \\ 0.03 \\ 0.081 \\ -0.0002 \\ -0.027\end{array}\right\}$
- The translations deformations are in meters and the rotational deformations are in radians

Author Information

Dr. Gul Ahmed Jokhio

is a Senior Lecturer at FKASA, UMP. He completed his PhD from Imperial College London in 2012.

