For updated version, please click on http://ocw.ump.edu.my

Finite Element Analysis

Frame Equations Example

by Dr. Gul Ahmed Jokhio Faculty of Civil Engineering and Earth Resources

Lesson Outcomes

- At the end of this lesson, the student should be able to:
 - Apply the element equations for beam-columns to a frame example
 - Evaluate the unknown deformations of a frame structure using Finite Element Analysis

Example Frame Structure

- Find the unknown deformations at nodes 1 and 2 for the frame
- Use:
- E = 200GPa
- $A = 0.0112m^2$
- $I = 2.39 \times 10^{-5} m^2$

Discretization

- The structure is discretized into 3 nodes and 2 elements
- Element 1 is connected to nodes 1 and 2 and element 2 is connected to nodes 2 and 3
- Node 1 has a 60kN load acting downwards
- Node 3 is fixed
- Length of element 1 is 3m and that of element
 2 is 6m

Stiffness Matrix for Element 1

•
$$\theta = 0, C = 1, S = 0$$

•
$$\frac{E}{L} = \frac{2 \times 10^{11}}{3} = 6.67 \times 10^{10}$$

•
$$\frac{12I}{L^2} = \frac{12 \times 2.39 \times 10^{-5}}{3^2} = 3.19 \times 10^{-5}$$

•
$$\frac{6I}{L} = 4.78 \times 10^{-5}$$

- $4I = 9.56 \times 10^{-5}$
- $2I = 4.78 \times 10^{-5}$

Stiffness Matrix for Element 1 (Continued)

•	[k] =	6.67 ×					
]	0.0112	0	0	-0.0112	0	ך 0
		0	3.19×10^{-5}	4.78×10^{-5}	0	-3.19×10^{-5}	4.78×10^{-5}
	10 ¹⁰	0	4.78×10^{-5}	9.56×10^{-5}	0	-4.78×10^{-5}	4.78×10^{-5}
	10	-0.0112	0	0	0.0112	0	0
		0	-3.19×10^{-5}	4.78×10^{-5}	0	3.19×10^{-5}	4.78×10^{-5}
	l	- 0	-4.78×10^{-5}	4.78×10^{-5}	0	4.78×10^{-5}	9.56×10^{-5}

Stiffness Matrix for Element 2

•
$$\theta = 270, C = 0, S = -1$$

•
$$\frac{E}{L} = \frac{2 \times 10^{11}}{6} = 3.33 \times 10^{10}$$

•
$$\frac{12I}{L^2} = \frac{12 \times 2.39 \times 10^{-5}}{6^2} = 7.97 \times 10^{-6}$$

•
$$\frac{6I}{L} = 2.39 \times 10^{-5}$$

- $4I = 9.56 \times 10^{-5}$
- $2I = 4.78 \times 10^{-5}$

Stiffness Matrix for Element 2 (Continued)

•
$$[k] = 3.33 \times$$

 $10^{10} \begin{bmatrix} 7.97 \times 10^{-6} & 0 & 2.39 \times 10^{-5} & -7.97 \times 10^{-6} & 0 & 2.39 \times 10^{-5} \\ 0 & 0.0112 & 0 & 0 & -0.0112 & 0 \\ 2.39 \times 10^{-5} & 0 & 9.56 \times 10^{-5} & -2.39 \times 10^{-5} & 0 & 4.78 \times 10^{-5} \\ -7.97 \times 10^{-6} & 0 & 2.39 \times 10^{-5} & 7.97 \times 10^{-6} & 0 & 2.39 \times 10^{-5} \\ 0 & -0.0112 & 0 & 0 & 0.0112 & 0 \\ -2.39 \times 10^{-5} & 0 & 4.78 \times 10^{-5} & 2.39 \times 10^{-5} & 0 & 9.56 \times 10^{-5} \end{bmatrix}$
• Since node 3 is fixed, we only need the first part of this matrix for assembly

•
$$[k] = 3.33 \times 10^{10} \begin{bmatrix} 7.97 \times 10^{-6} & 0 & 2.39 \times 10^{-5} \\ 0 & 0.0112 & 0 \\ 2.39 \times 10^{-5} & 0 & 9.56 \times 10^{-5} \end{bmatrix}$$

Assembly of Stiffness Matrix (Including Boundary Conditions)

•	[k] =	6.67 ×						
	ſ	0.0112	0	0	-0.0112	0	ך 0	
		0	3.19×10^{-5}	4.78×10^{-5}	0	-3.19×10^{-5}	4.78×10^{-5}	
	10 ¹⁰	0	4.78×10^{-5}	9.56×10^{-5}	0	-4.78×10^{-5}	4.78×10^{-5}	
	10	-0.0112	0	0	0.0112	0	1.2×10^{-5}	
		0		4.78×10^{-5}	0	0.0112	4.78×10^{-5}	
	L	0	-4.78×10^{-5}	4.78×10^{-5}	1.2×10^{-5}	4.78×10^{-5}	1.43×10^{-4}	

System of Equations

• The system of Equations is given as:

$$\begin{cases} f_{1x} \\ f_{1y} \\ m_1 \\ f_{2x} \\ f_{2y} \\ m_2 \end{cases} = [K] \begin{cases} u_1 \\ v_1 \\ m_1 \\ u_2 \\ v_2 \\ m_2 \end{cases}$$

٠

•

$$\begin{cases} 0 \\ -60000 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{cases} = 6.67 \times \\ 10^{10} \begin{bmatrix} 0.0112 & 0 & 0 & -0.0112 & 0 & 0 \\ 0 & 3.19 \times 10^{-5} & 4.78 \times 10^{-5} & 0 & -3.19 \times 10^{-5} & 4.78 \times 10^{-5} \\ 0 & 4.78 \times 10^{-5} & 9.56 \times 10^{-5} & 0 & -4.78 \times 10^{-5} & 4.78 \times 10^{-5} \\ -0.0112 & 0 & 0 & 0.0112 & 0 & 1.2 \times 10^{-5} \\ 0 & -3.19 \times 10^{-5} & 4.78 \times 10^{-5} & 0 & 0.0112 & 4.78 \times 10^{-5} \\ 0 & -4.78 \times 10^{-5} & 4.78 \times 10^{-5} & 1.2 \times 10^{-5} & 4.78 \times 10^{-5} & 1.43 \times 10^{-4} \end{bmatrix} \begin{pmatrix} u_1 \\ v_1 \\ \phi_1 \\ u_2 \\ v_2 \\ \phi_2 \end{pmatrix}$$

Solution

• After Solution of the system of equations, we get:

$$\cdot \begin{cases} u_1 \\ v_1 \\ \phi_1 \\ \phi_1 \\ u_2 \\ v_2 \\ \phi_2 \end{cases} = \begin{cases} 0.081 \\ -0.032 \\ 0.03 \\ 0.081 \\ -0.0002 \\ -0.027 \end{cases}$$

 The translations deformations are in meters and the rotational deformations are in radians

Author Information

Dr. Gul Ahmed Jokhio

is a Senior Lecturer at FKASA, UMP. He completed his PhD from Imperial College London in 2012.

