Finite Element Analysis

Frame Equations Axial Effects

by

Dr. Gul Ahmed Jokhio
Faculty of Civil Engineering and Earth Resources okhio@ump.edu.my

Lesson Outcomes

- At the end of this lesson, the student should be able to:
- Develop frame equations including axial effects
- Generate element stiffness matrix for a beamcolumn element

Beam Arbitrarily Oriented in Plane

- In the previous lecture, we developed element equations for a beam element arbitrarily orientated in 2D plane
- $[k]=$
$\frac{E I}{L^{3}}\left[\begin{array}{cccccc}12 S^{2} & -12 S C & -6 L S & -12 S^{2} & 12 S C & -6 L S \\ -12 S C & 12 C^{2} & 6 L C & 12 S C & -12 C^{2} & 6 L C \\ -6 L S & 6 L C & 4 L^{2} & 6 L S & -6 L C & 2 L^{2} \\ -12 S^{2} & 12 S C & 6 L S & 12 S^{2} & -12 S C & 6 L S \\ 12 S C & -12 C^{2} & -6 L C & -12 S C & 12 C^{2} & -6 L C \\ -6 L S & 6 L C & 2 L^{2} & 6 L S & -6 L C & 4 L^{2}\end{array}\right]$
- This beam element includes shear and bending effects only
- A structural member resisting axial forces as well as shear and bending is known as beam-column

Beam-Columns

- Beam-columns are finite element models that can be used to analyze any structural member that resists axial forces in addition to shear and bending
- These are general prismatic elements
- It means that if any one of the effects is missing, these elements can still be used
- For example, if there is no bending, these elements can still model the column
- To develop element equations for beam-columns, we will include axial effects into the beam equations

Axial Effects

- We recall from bar element formulation that:
- $\left\{\begin{array}{c}f_{1}^{\prime} \\ f_{2}^{\prime}\end{array}\right\}=\frac{A E}{L}\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]\left\{\begin{array}{l}u_{1}^{\prime} \\ u_{2}^{\prime}\end{array}\right\}$
- Combining these axial effects with the shear and flexural effects of the beam stiffness matrix, we get the local stiffness matrix for a beam element including axial effects
- Recalling the local stiffness matrix for abeam element:
- $\left\{\begin{array}{l}f_{1 y} \\ m_{1} \\ f_{2 y} \\ m_{2}\end{array}\right\}=\frac{E I}{L^{3}}\left[\begin{array}{cccc}12 & -6 L & -12 & -6 L \\ -6 L & 4 L^{2} & 6 L & 2 L^{2} \\ -12 & 6 L & 12 & 6 L \\ -6 L & 2 L^{2} & 6 L & 4 L^{2}\end{array}\right]\left\{\begin{array}{l}v_{1} \\ \phi_{1} \\ v_{2} \\ \phi_{2}\end{array}\right\}$

Axial Effects (Continued)

- Combining these two sets of equations:
- $\left\{\begin{array}{l}f_{1 x}^{\prime} \\ f_{1 y}^{\prime} \\ m_{1}^{\prime} \\ f_{2 x}^{\prime} \\ f_{2 y}^{\prime} \\ m_{2}^{\prime}\end{array}\right\}=\left[\begin{array}{cccccc}\frac{A E}{L} & 0 & 0 & -\frac{A E}{L} & 0 & 0 \\ 0 & \frac{12 E I}{L^{3}} & \frac{6 E I}{L^{2}} & 0 & \frac{-12 E I}{L^{3}} & \frac{6 E I}{L^{2}} \\ 0 & \frac{6 E I}{L^{2}} & \frac{4 E I}{L} & 0 & \frac{-6 E I}{L^{2}} & \frac{2 E I}{L} \\ -\frac{A E}{L} & 0 & 0 & \frac{A E}{L} & 0 & 0 \\ 0 & \frac{12 E I}{L^{3}} & \frac{-6 E I}{L^{2}} & 0 & \frac{12 E I}{L^{3}} & \frac{-6 E I}{L^{2}} \\ 0 & \frac{6 E I}{L^{2}} & \frac{2 E I}{L} & 0 & \frac{-6 E I}{L^{2}} & \frac{4 E I}{L}\end{array}\right]\left\{\begin{array}{c}u_{1}^{\prime} \\ v_{1}^{\prime} \\ \phi_{1}^{\prime} \\ u_{2}^{\prime} \\ v_{2}^{\prime} \\ \phi_{2}^{\prime}\end{array}\right\}$

Axial Effects in Local Coordinates System

- From above, we can extract the stiffness matrix including the axial effects in local coordinates system as:
- $\left[k^{\prime}\right]=\left[\begin{array}{cccccc}\frac{A E}{L} & 0 & 0 & -\frac{A E}{L} & 0 & 0 \\ 0 & \frac{12 E I}{L^{3}} & \frac{6 E I}{L^{2}} & 0 & \frac{-12 E I}{L^{3}} & \frac{6 E I}{L^{2}} \\ 0 & \frac{6 E I}{L^{2}} & \frac{4 E I}{L} & 0 & \frac{-6 E I}{L^{2}} & \frac{2 E I}{L} \\ -\frac{A E}{L} & 0 & 0 & \frac{A E}{L} & 0 & 0 \\ 0 & \frac{12 E I}{L^{3}} & \frac{-6 E I}{L^{2}} & 0 & \frac{12 E I}{L^{3}} & \frac{-6 E I}{L^{2}} \\ 0 & \frac{6 E I}{L^{2}} & \frac{2 E I}{L} & 0 & \frac{-6 E I}{L^{2}} & \frac{4 E I}{L}\end{array}\right]$

Transformation from Local to Global Coordinates System

- Since the axial effects will always be considered along the main axis of the member
- Therefore, for arbitrarily orientated members, we can include the transformation of element equations by adding ' 1 ' in the diagonal position of the transformation matrix while retaining all the other values in the corresponding rows and columns as zero
- This results in a transformation matrix as given below:

Transformation from Local to Global Coordinates System (Continued)

$\cdot\left\{\begin{array}{l}u_{1}^{\prime} \\ v_{1}^{\prime} \\ \phi_{1}^{\prime} \\ u_{2}^{\prime} \\ v_{2}^{\prime} \\ \phi_{2}^{\prime}\end{array}\right\}=\left[\begin{array}{cccccc}C & S & 0 & 0 & 0 & 0 \\ -S & C & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & C & S & 0 \\ 0 & 0 & 0 & -S & C & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}u_{1} \\ v_{1} \\ \phi_{1} \\ u_{2} \\ v_{2} \\ \phi_{2}\end{array}\right\}$

- From the above, we get transformation matrix [T] as highlighted
- The global stiffness matrix can now be calculated as $[k]=[T]^{T}\left[k^{\prime}\right][T]$

Global Stiffness Matrix for a Beam-Column

- After performing the necessary matrix operations, we get:
- $\quad[k]=$
$\frac{E}{L}\left[\begin{array}{cccccc}A C^{2}+\frac{12 I}{L^{2}} S^{2} & \left(A-\frac{12 I}{L^{2}}\right) C S & -\frac{6 I}{L} S & -\left(A C^{2}+\frac{12 I}{L^{2}} S^{2}\right) & -\left(A-\frac{12 I}{L^{2}}\right) C S & -\frac{6 I}{L} S \\ \left(A-\frac{12 I}{L^{2}}\right) C S & A S^{2}+\frac{12 I}{L^{2}} C^{2} & \frac{6 I}{L} C & -\left(A-\frac{12 I}{L^{2}}\right) C S & -\left(A S^{2}+\frac{12 I}{L^{2}} C^{2}\right) & \frac{6 I}{L} C \\ -\frac{6 I}{L} S & \frac{6 I}{L} C & 4 I & \frac{6 I}{L} S & -\frac{6 I}{L} C & 2 I \\ -\left(A C^{2}+\frac{12 I}{L^{2}} S^{2}\right) & -\left(A-\frac{12 I}{L^{2}}\right) C S & \frac{6 I}{L} S & \left(A C^{2}+\frac{12 I}{L^{2}} S^{2}\right) & \left(A-\frac{12 I}{L^{2}}\right) C S & \frac{6 I}{L} S \\ -\left(A-\frac{12 I}{L^{2}}\right) C S & -\left(A S^{2}+\frac{12 I}{L^{2}} C^{2}\right) & -\frac{6 I}{L} C & \left(A-\frac{12 I}{L^{2}}\right) C S & \left(A S^{2}+\frac{12 I}{L^{2}} C^{2}\right) & -\frac{6 I}{L} C \\ -\frac{6 I}{L} S & \frac{6 I}{L} C & 2 I & \frac{6 I}{L} S & -\frac{6 I}{L} C & 4 I\end{array}\right]$
- This is the stiffness matrix for a beam-column arbitrarily orientated in plane and including axial effects
- An example employing this matrix will be studied in the next lecture

Author Information

Dr. Gul Ahmed Jokhio

is a Senior Lecturer at FKASA, UMP. He completed his PhD from Imperial College London in 2012.

