Finite Element Analysis

Frame Equations Beam Arbitrarily Oriented in Plane

by
Dr. Gul Ahmed Jokhio
Faculty of Civil Engineering and Earth Resources okhio@ump.edu.my

Lesson Outcomes

- At the end of this lesson, the student should be able to:
- Transform beam equations in 2 dimensions
- Develop element equations for a beam arbitrarily orientated in plane

Frames

- For the development of beam equations, it was assumed that the beam is orientated in the positive x direction
- This is true when only the beams are considered
- But most of the times in real structures, beams are parts of frames
- Frames consist of beams as well as columns
- Columns are the structural members that are mainly loaded axially
- This is unlike beams, which as was discussed in the previous lecture, resist only shear and bending

Frames (Continued)

- In order to model frames, we need element equations to include the axial effects as well
- Also, when part of a frame, beam elements can be orientated in any direction
- Therefore, the developed beam equations also need to be transformed
- After transformation and inclusion of axial effects, the beam equations can be used to model any frame member including columns

Frames (Continued)

- Therefore, in summary, we can say that:
- Frames are combinations of beams and columns
- Frames can be 2D plane or 3D space
- To begin with, we will study 2D plane frames
- First we will discuss the transformation of beam equations in 2D plane

Beam Element Arbitrarily Orientated in Plane

- Consider the beam element arbitrarily oriented in 2D plane as shown:

Beam Element Arbitrarily Orientated in Plane (Continued)

- Recalling the transformation of local displacements to global displacements of a bar element:
- $\left\{\begin{array}{c}u^{\prime} \\ v^{\prime}\end{array}\right\}=\left[\begin{array}{cc}C & S \\ -S & C\end{array}\right]\left\{\begin{array}{l}u \\ v\end{array}\right\}$
- The bar element had 1 local DOF per node, whereas, the beam element has two local DOF per node
- Therefore, transformation of bar equations can be extended for a beam element as
- $\left\{\begin{array}{l}v_{1}^{\prime} \\ \phi_{1}^{\prime} \\ v_{2}^{\prime} \\ \phi_{2}^{\prime}\end{array}\right\}=\left[\begin{array}{cccccc}-S & C & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -S & C & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]\left\{\begin{array}{l}u_{1} \\ v_{1} \\ \phi_{1} \\ u_{2} \\ v_{2} \\ \phi_{2}\end{array}\right\}$

Beam Element Arbitrarily Orientated in Plane (Continued)

- From above, the transformation matrix for a beam element is defined as
- $[T]=\left[\begin{array}{cccccc}-S & C & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -S & C & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$
- We can calculate the global stiffness matrix for the beam element following a similar procedure as used for the bar element
- $[k]=[T]^{T}\left[k^{\prime}\right][T]$

Beam Element Arbitrarily Orientated in Plane (Continued)

- After performing the necessary matrix operations (multiplication), we get:
- $[k]=\frac{E I}{L^{3}}\left[\begin{array}{cccccc}12 S^{2} & -12 S C & -6 L S & -12 S^{2} & 12 S C & -6 L S \\ -12 S C & 12 C^{2} & 6 L C & 12 S C & -12 C^{2} & 6 L C \\ -6 L S & 6 L C & 4 L^{2} & 6 L S & -6 L C & 2 L^{2} \\ -12 S^{2} & 12 S C & 6 L S & 12 S^{2} & -12 S C & 6 L S \\ 12 S C & -12 C^{2} & -6 L C & -12 S C & 12 C^{2} & -6 L C \\ -6 L S & 6 L C & 2 L^{2} & 6 L S & -6 L C & 4 L^{2}\end{array}\right]$
- This is the stiffness matrix for a beam element arbitrarily orientated in plane
- This element does not yet include axial effects
- It means that while it can model a beam orientated arbitrarily in plane, it can not analyze columns
- To be able to analyze columns, we have to consider axial effects

Author Information

Dr. Gul Ahmed Jokhio

is a Senior Lecturer at FKASA, UMP. He completed his PhD from Imperial College London in 2012.

