Finite Element Analysis

Formulation of a Beam Element

by
Dr. Gul Ahmed Jokhio
Faculty of Civil Engineering and Earth Resources
okhio@ump.edu.my

Lesson Outcomes

- At the end of this lesson, the student should be able to:
- Apply the formulation of beam element to analyse a structure
- Interpret the results of analysis using beam elements

Example Structure

- Calculate the support reactions for the beam structure shown below using Finite Element Analysis
- Use $b=7 \mathrm{~cm}, d=16 \mathrm{~cm}, E=200 G P a$

Discretization

- The discretization of the example beam is shown in the Figure on the previous slide
- Because the force vector can only take nodal values, a node has been added at mid-span where the load is applied
- The structure, therefore, consists of 2 elements and 3 nodes with element 1 connected to nodes 1 and 2 and element 2 connected to nodes 2 and 3
- Node 1 is fixed, which means there will be neither rotation nor translation at this node
- Node 3 has a roller support, which means there will be no translation at this node, however, rotation is possible
- Length of each of the elements is 3 m

Element Stiffness Matrices

- Since both the elements in the example structure are the same, we need to write only one stiffness matrix
- The same stiffness matrix will be used for both the elements
- The general formula for the stiffness matrix was developed in the previous lecture
$\cdot[k]=\frac{E I}{L^{3}}\left[\begin{array}{cccc}12 & -6 L & -12 & -6 L \\ -6 L & 4 L^{2} & 6 L & 2 L^{2} \\ -12 & 6 L & 12 & 6 L \\ -6 L & 2 L^{2} & 6 L & 4 L^{2}\end{array}\right]$

Element Stiffness Matrices (Continued)

- For both the elements:
- $E=200 G P a=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$
- $I=\frac{b d^{3}}{12}=\frac{0.07 \times 0.16^{3}}{12}=2.39 \times 10^{-5} \mathrm{~m}^{4}$
- $L=3 m$
- $\frac{E I}{L^{3}}=\frac{2 \times 10^{11} \times 2.39 \times 10^{-5}}{3^{3}}=177,037 \mathrm{~N} / \mathrm{m}$
- $[k]=177,037\left[\begin{array}{cccc}12 & -18 & -12 & -18 \\ -18 & 36 & 18 & 18 \\ -12 & 18 & 12 & 18 \\ -18 & 18 & 18 & 36\end{array}\right]$

Element Equations for Element No. 1

- Element Equations for Element No. 1 are written according to its connectivity as:
- $\left\{\begin{array}{c}f_{1} \\ m_{1} \\ f_{2} \\ m_{2}\end{array}\right\}=177,037\left[\begin{array}{cccc}12 & -18 & -12 & -18 \\ -18 & 36 & 18 & 18 \\ -12 & 18 & 12 & 18 \\ -18 & 18 & 18 & 36\end{array}\right]\left\{\begin{array}{l}v_{1} \\ \phi_{1} \\ v_{2} \\ \phi_{2}\end{array}\right\}$

Element Equations for Element No. 2

- Element Equations for Element No. 1 are written according to its connectivity as:
- $\left\{\begin{array}{c}f_{2} \\ m_{2} \\ f_{3} \\ m_{3}\end{array}\right\}=177,037\left[\begin{array}{cccc}12 & -18 & -12 & -18 \\ -18 & 36 & 18 & 18 \\ -12 & 18 & 12 & 18 \\ -18 & 18 & 18 & 36\end{array}\right]\left\{\begin{array}{l}v_{2} \\ \phi_{2} \\ v_{3} \\ \phi_{3}\end{array}\right\}$

Assembly of Structure Stiffness Equations

- The system of equations for the entire structure can be assembled using the direct stiffness approach
- $\left\{\begin{array}{c}f_{1} \\ m_{1} \\ f_{2} \\ m_{2} \\ f_{3} \\ m_{3}\end{array}\right\}=177,037\left[\begin{array}{cccccc}12 & -18 & -12 & -18 & 0 & 0 \\ -18 & 36 & 18 & 18 & 0 & 0 \\ -12 & 18 & 24 & 0 & -12 & -18 \\ -18 & 18 & 0 & 72 & 18 & 18 \\ 0 & 0 & -12 & 18 & 12 & 18 \\ 0 & 0 & -18 & 18 & 18 & 36\end{array}\right]\left\{\begin{array}{l}v_{1} \\ \phi_{1} \\ v_{2} \\ \phi_{2} \\ v_{3} \\ \phi_{3}\end{array}\right\}$

Boundary Conditions

- We know that:
- $v_{1}=0, \phi_{1}=0, v_{3}=0$ and
- $f_{2}=-60000 N, m_{2}=0, m_{3}=0$
- Therefore, the reduced system of equations becomes:
$\cdot\left\{\begin{array}{c}-60000 \\ 0 \\ 0\end{array}\right\}=177037\left[\begin{array}{ccc}24 & 0 & -18 \\ 0 & 72 & 18 \\ -18 & 18 & 36\end{array}\right]\left\{\begin{array}{l}v_{2} \\ \phi_{2} \\ \phi_{3}\end{array}\right\}$

Solution of the System of Equations

- The solution of the linear system of equations yields:
- $v_{2}=-0.02471 \mathrm{~m}=-2.47 \mathrm{~cm}$
- $\phi_{2}=0.00353 \mathrm{rad}=0.2^{\circ}$
- $\phi_{3}=-0.01412 \mathrm{rad}=-0.81^{\circ}$
- Substituting these values in the equations that we removed earlier:
- $f_{1}=177037\left(-12 v_{2}-18 \phi_{2}\right)=41,224.84 N \cong 41.22 k N$
- $m_{1}=177037\left(18 v_{2}+18 \phi_{2}\right)=-67,493.6 \mathrm{Nm} \cong-67.5 \mathrm{kNm}$
- $f_{3}=177037\left(-12 v_{2}+18 \phi_{2}+18 \phi_{3}\right)=18,726.97 \mathrm{~N} \cong 18.73 \mathrm{kN}$
- Since the beams are orientated in positive x -direction, there is no need to transform these forces

Author Information

Dr. Gul Ahmed Jokhio

is a Senior Lecturer at FKASA, UMP. He completed his PhD from Imperial College London in 2012.

