Finite Element Analysis

3D Space Truss Example

by
Dr. Gul Ahmed Jokhio
Faculty of Civil Engineering and Earth Resources
iokhio@ump.edu.my

Lesson Outcomes

- At the end of this lesson, the student should be able to:
- Apply Bar Element Equations in 3D Space
- Evaluate 3D space truss

Example

- The tripod shown in Figure 1 is to be used to support a Total Station weighing 200N. The tripod legs form an equilateral triangle at the base with the side length of the triangle being 0.75 m whereas the height of the top of the tripod from the ground is 1.5 m . It can be assumed that the tripod legs are restricted from any translation at the base. The tripod legs are made of a synthetic linear elastic material with modulus of elasticity being 10 GPa . The diameter of the circular cross-section of the tripod legs is 2 cm .
- Generate a suitable finite element model for the supporting structure including number of nodes, element type selected, element connectivity and a sketch of the model
- Compile and assemble the required element stiffness matrices
- c) After applying the boundary conditions to the assembly of the stiffness matrices in (b) above, evaluate the vertical deformation at the top of the tripod

Example

Figure 1

Solution

Using bar elements to model the tripod as a space truss and setting the origin at one of the base points of the tripod:

For all the elements:

$$
\begin{aligned}
& E=10 G P a=1 \times 10^{7} \mathrm{kN} / \mathrm{m}^{2} \\
& A=\pi r^{2}=\pi(2)^{2}=12.5664 \mathrm{~cm}^{2}=1.2566 \times 10^{-3} \mathrm{~m}^{2}
\end{aligned}
$$

Solution (Continued)

Element 1

$$
\begin{aligned}
& x_{1}=0.32, \quad y_{1}=1.5, \quad z_{1}=0.1848 \\
& x_{2}=0, \quad y_{2}=0, \quad z_{2}=0 \\
& L=\sqrt{(0-0.32)^{2}+(0-1.5)^{2}+(0-0.1848)^{2}}=1.5448 \mathrm{~m} \\
& C_{x}=\frac{x_{2}-x_{1}}{L}=\frac{0-0.32}{1.5448}=-0.2071 \\
& C_{y}=\frac{y_{2}-y_{1}}{L}=\frac{0-1.5}{1.5448}=-0.971 \\
& C_{z}=\frac{z_{2}-z_{1}}{L}=\frac{0-0.1848}{1.5448}=-0.1196 \\
& \frac{A E}{L}=\frac{1.2566 \times 10^{-3} \times 1 \times 10^{7}}{1.5448}=8134.3863 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

Solution (Continued)

$$
k^{(1)}=\left[\begin{array}{cccccc}
349.0227 & 1636.044 & 201.5606 & -349.023 & -1636.04 & -201.561 \\
1636.044 & 7668.957 & 944.8155 & -1636.04 & -7668.96 & -944.815 \\
201.5606 & 944.8155 & 116.4013 & -201.561 & -944.815 & -116.401 \\
-349.023 & -1636.04 & -201.561 & 349.0227 & 1636.044 & 201.5606 \\
-1636.04 & -7668.96 & -944.815 & 1636.044 & 7668.957 & 944.8155 \\
-201.561 & -944.815 & -116.401 & 201.5606 & 944.8155 & 116.4013
\end{array}\right]
$$

Element 2

$$
\begin{aligned}
& x_{1}=0.32, \quad y_{1}=1.5, \quad z_{1}=0.1848 \\
& x_{2}=0.64, \quad y_{2}=0, \quad z_{2}=0 \\
& L=\sqrt{(0.64-0.32)^{2}+(0-1.5)^{2}+(0-0.18)^{2}}=1.5448 \mathrm{~m} \\
& C_{x}=\frac{x_{2}-x_{1}}{L}=\frac{0.64-0.32}{1.5448}=0.2071
\end{aligned}
$$

Solution (Continued)

$$
\begin{aligned}
& C_{y}=\frac{y_{2}-y_{1}}{L}=\frac{0-1.5}{1.5448}=-0.971 \\
& C_{z}=\frac{z_{2}-z_{1}}{L}=\frac{0-0.1848}{1.5448}=-0.1196 \\
& \frac{A E}{L}=\frac{1.2566 \times 10^{-3} \times 1 \times 10^{7}}{1.5448}=8134.3863 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

$k^{(2)}=\left[\begin{array}{cccccc}349.0227 & -1636.044 & -201.5606 & -349.023 & 1636.04 & 201.561 \\ -1636.044 & 7668.957 & 944.8155 & 1636.04 & -7668.96 & -944.815 \\ -201.5606 & 944.8155 & 116.4013 & 201.561 & -944.815 & -116.401 \\ -349.023 & 1636.04 & 201.561 & 349.0227 & -1636.044 & -201.5606 \\ 1636.04 & -7668.96 & -944.815 & -1636.044 & 7668.957 & 944.8155 \\ 201.561 & -944.815 & -116.401 & -201.5606 & 944.8155 & 116.4013\end{array}\right]$

Element 3

$$
x_{1}=0.32, \quad y_{1}=1.5, \quad z_{1}=0.1848
$$

Solution (Continued)

$$
\begin{aligned}
& x_{2}=0.32, \quad y_{2}=0, \quad z_{2}=0.5543 \\
& L=\sqrt{(0.32-0.32)^{2}+(0-1.5)^{2}+(0.55-0.18)^{2}}=1.5448 \mathrm{~m} \\
& C_{x}=\frac{x_{2}-x_{1}}{L}=\frac{0.32-0.32}{1.5448}=0 \\
& C_{y}=\frac{y_{2}-y_{1}}{L}=\frac{0-1.5}{1.5448}=-0.971 \\
& C_{z}=\frac{z_{2}-z_{1}}{L}=\frac{0.5543-0.1848}{1.5448}=0.2392 \\
& \frac{A E}{L}=\frac{1.2566 \times 10^{-3} \times 1 \times 10^{7}}{1.5448}=8134.3863 \mathrm{kN} / \mathrm{m}
\end{aligned}
$$

Solution (Continued)

$$
k^{(3)}=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 7668.957 & -1889.14 & 0 & -7668.96 & 1889.144 \\
0 & -1889.14 & 465.3592 & 0 & 1889.144 & -465.359 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & -7668.96 & 1889.144 & 0 & 7668.957 & -1889.14 \\
0 & 1889.144 & -465.359 & 0 & -1889.14 & 465.3592
\end{array}\right]
$$

Only the first node is free for all three elements with the second nodes being restricted. After application of the boundary conditions, the element stiffness matrices become:

$$
k^{(1)}=\left[\begin{array}{lll}
349.0227 & 1636.044 & 201.5606 \\
1636.044 & 7668.957 & 944.8155 \\
201.5606 & 944.8155 & 116.4013
\end{array}\right]
$$

Solution (Continued)

$$
\begin{aligned}
& k^{(2)}=\left[\begin{array}{ccc}
349.0227 & -1636.044 & -201.5606 \\
-1636.044 & 7668.957 & 944.8155 \\
-201.5606 & 944.8155 & 116.4013
\end{array}\right] \\
& k^{(3)}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 7668.957 & -1889.14 \\
0 & -1889.14 & 465.3592
\end{array}\right]
\end{aligned}
$$

Assembling the matrices to formulate the system of equations:

$$
\left\{\begin{array}{c}
0 \\
-0.2 \\
0
\end{array}\right\}=\left[\begin{array}{ccc}
698 & 0 & 0 \\
0 & 23007 & 0 \\
0 & 0 & 698
\end{array}\right]\left\{\begin{array}{c}
u_{1} \\
v_{1} \\
w_{1}
\end{array}\right\}
$$

The solution of the system of equations can be directly obtained as:

$$
u_{1}=0
$$

Solution (Continued)

$$
\begin{aligned}
& v_{1}=\frac{-0.2}{23007}=-8.7 \times 10^{-6} \mathrm{~m} \\
& w_{1}=0
\end{aligned}
$$

The total displacement at the top of the tripod is 0.0087 mm straight downwards.

Author Information

Dr. Gul Ahmed Jokhio

is a Senior Lecturer at FKASA, UMP. He completed his PhD from Imperial College London in 2012.

