## Finite Element Analysis

## Bar Element in 3D Space

by
Dr. Gul Ahmed Jokhio
Faculty of Civil Engineering and Earth Resources okhio@ump.edu.my

Communitising Technology

## Lesson Outcomes

- At the end of this lesson, the student should be able to:
- Transform bar element equations from local coordinates system to global 3D space coordinates systems
- Analyze 3D space truss


## Transformation in 3D Space

- In 3D spacy, we have 3 orthogonal axes
- Consider a vector in local coordinates system to be transformed into global space
- $u^{\prime} \mathbf{i}^{\prime}+v^{\prime} \mathbf{j}^{\prime}+w^{\prime} \mathbf{k}^{\prime}=u \mathbf{i}+v \mathbf{j}+w \mathbf{k}$
- Taking dot product with $\mathbf{i}^{\prime}$
- $u^{\prime}+0+0=u\left(\mathbf{i}^{\prime} . \mathbf{i}\right)+v\left(\mathbf{i}^{\prime} \cdot \mathbf{j}\right)+w\left(\mathbf{i}^{\prime} . \mathbf{k}\right)$
- We know that
- $\mathbf{i}^{\prime} \cdot \mathbf{i}=\frac{x_{2}-x_{1}}{L}=C_{x}$ where $C_{x}=\cos \theta_{x}$
- $\mathbf{i}^{\prime} \cdot \mathbf{j}=\frac{y_{2}-y_{1}}{L}=C_{y}$ where $C_{y}=\cos \theta_{y}$
- $\mathbf{i}^{\prime} . \mathbf{i}=\frac{z_{2}-z_{1}}{L}=C_{z}$ where $C_{z}=\cos \theta_{z}$
- $L=\sqrt{\left(x_{2}-x_{2}\right)^{2}+\left(y_{2}-y_{2}\right)^{2}+\left(z_{2}-z_{2}\right)^{2}}$


## Transformation in 3D Space (Continued)

- Therefore:
- $u^{\prime}=C_{x} u+C_{y} v+C_{z} w$
- For both ends:
- $u_{1}^{\prime}=C_{x} u_{1}+C_{y} v_{1}+C_{z} w_{1}$
- $u_{2}^{\prime}=C_{x} u_{2}+C_{y} v_{2}+C_{z} w_{2}$
- Matrix form


## Transformation in 3D Space (Continued)

- The transformation matrix in 3D space is therefore obtained as:
- $[T]=\left[\begin{array}{cccccc}C_{x} & C_{y} & C_{z} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{x} & C_{y} & C_{z}\end{array}\right]$
- We can use this matrix to transform local deformations into global
- $\left\{d^{\prime}\right\}=[T]\{d\}$
- $\left\{f^{\prime}\right\}=[T]\{f\}$
- Now the basic FEA equation in local coordinates systems is given as:
- $\left\{f^{\prime}\right\}=\left[k^{\prime}\right]\left\{d^{\prime}\right\}$
- Using the transformations obtained above:
- $[T]\{f\}=\left[k^{\prime}\right][T]\{d\}$
- $\{f\}=[T]^{T}\left[k^{\prime}\right][T]\{d\}$
- $\{f\}=[k]\{d\}$
- $\quad[k]=[T]^{T}\left[k^{\prime}\right][T]$


## Global Stiffness Matrix in 3D Space

- After performing the necessary matrix operations:
- $[k]=\frac{A E}{L}\left[\begin{array}{cccccc}C_{x}^{2} & C_{x} C_{y} & C_{x} C_{z} & -C_{x}^{2} & -C_{x} C_{y} & -C_{x} C_{z} \\ C_{x} C_{y} & C_{y}^{2} & C_{y} C_{z} & -C_{x} C_{y} & -C_{y}^{2} & -C_{y} C_{z} \\ C_{x} C_{z} & C_{y} C_{z} & C_{z}^{2} & -C_{x} C_{z} & -C_{y} C_{z} & -C_{y}^{2} \\ -C_{x}^{2} & -C_{x} C_{y} & -C_{x} C_{z} & C_{x}^{2} & C_{x} C_{y} & C_{x} C_{z} \\ -C_{x} C_{y} & -C_{y}^{2} & -C_{y} C_{z} & C_{x} C_{y} & C_{y}^{2} & C_{y} C_{z} \\ -C_{x} C_{z} & -C_{y} C_{z} & -C_{y}^{2} & C_{x} C_{z} & C_{y} C_{z} & C_{y}^{2}\end{array}\right]$
- This is the general form of the stiffness matrix for a bar element orientated arbitrarily in 3D space
- Generally, this matrix is divided into 4 portions for easy assembly


## Global Stiffness Matrix in 3D Space (Continued)

- $[k]=\left[\begin{array}{cc}{[\lambda]} & -[\lambda] \\ -[\lambda] & {[\lambda]}\end{array}\right]$
- Where
- $[\lambda]=\left[\begin{array}{ccc}C_{x}^{2} & C_{x} C_{y} & C_{x} C_{z} \\ C_{x} C_{y} & C_{y}^{2} & C_{y} C_{z} \\ C_{x} C_{z} & C_{y} C_{z} & C_{z}^{2}\end{array}\right]$
- It can be observed that even this quarter of the stiffness matrix is symmetric in itself
- Therefore, one only needs to calculate 5 values that are then repeated


## Author Information

## Dr. Gul Ahmed Jokhio

is a Senior Lecturer at FKASA, UMP. He completed his PhD from Imperial College London in 2012.

Communitising Technology

