For updated version, please click on http://ocw.ump.edu.my

Finite Element Analysis

Stresses in a Bar Element in 2D

by Dr. Gul Ahmed Jokhio Faculty of Civil Engineering and Earth Resources

Lesson Outcomes

- At the end of this lesson, the student should be able to:
 - Understand the transformation of global nodal forces to local element forces
 - Evaluate stresses in a bar element orientated at any angle in plane

Element Stresses

• Consider the bar element orientated along positive x-axis

•
$$\begin{cases} f'_{1x} \\ f'_{2x} \end{cases} = \frac{AE}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{cases} u'_1 \\ u'_2 \end{cases}$$

- Here the superscript ' refers to the local coordinate system
- Since the equilibrium suggests that these forces at both ends of the element must be equal and opposite, we can evaluate any one
- Taking f'_{2x} :
- $f'_{2x} = \frac{EA}{L} \begin{bmatrix} -1 & 1 \end{bmatrix} \{ d' \}$
- We know that stress is force divided by area, therefore:
- $\{\sigma\} = \frac{E}{L}[-1 \ 1]\{d'\}$
- This gives stress in terms of local deformations

Transformation of Element Stresses

• We can transform local deformations using the transformation matrix developed earlier

•
$$\{\sigma\} = \frac{E}{L}[-1 \quad 1][T^T]\{d\}$$

- This can be expressed in the compact form as:
- $\{\sigma\} = [C']\{d\}$
- Where, [C'] is the transformation matrix for element stresses. It is written as:

•
$$[C'] = \frac{E}{L} \begin{bmatrix} -C & -S & C & S \end{bmatrix}$$

Example

- From the truss example evaluated in the previous lecture, we have:
- For Element No. 1:

.

- $C_1 = 1, S_1 = 0, E = 2 \times 10^8, L = 6m$
- $[C_1'] = \frac{2 \times 10^8}{6} [-1 \quad 0 \quad 1 \quad 0]$
- $[C_1'] = [-3.33 \times 10^7 \quad 0 \quad 3.33 \times 10^7 \quad 0]$

•
$$\{d^{(1)}\} = \begin{cases} u_1 \\ v_1 \\ u_2 \\ v_2 \end{cases} = \begin{cases} 0 \\ 0 \\ 0.0045 \\ 0 \end{cases}$$

$$\{\sigma^{(1)}\} = [-3.33 \times 10^7 \quad 0 \quad 3.33 \times 10^7 \quad 0] \begin{cases} 0 \\ 0 \\ 0.0045 \\ 0 \end{cases} = 150,000 kN/m^2$$

• Stress in Element No. 1 is 150MPa (tension)

Example (Continued)

- Similarly, for Element No. 2:
- $C_2 = 0.629, S_2 = 0.777, E = 2 \times 10^8, L = 4.767m$
- $[C_1'] = \frac{2 \times 10^8}{4.767} [-0.629 \quad -0.777 \quad 0.629 \quad 0.777]$
- $[C_1'] = [-2.64 \times 10^7 \quad -3.26 \times 10^7 \quad 2.64 \times 10^7 \quad 3.26 \times 10^7]$

•
$$\{d^{(2)}\} = \begin{cases} u_1 \\ v_1 \\ u_3 \\ v_3 \end{cases} = \begin{cases} 0 \\ 0 \\ 0.011278 \\ -0.00182 \end{cases}$$

•
$$\{\sigma^{(1)}\} = [-2.64 \times 10^7 \quad -3.26 \times 10^7 \quad 2.64 \times 10^7 \quad 3.26 \times 10^7] \begin{cases} 0\\ 0\\ 0.011278\\ -0.00182 \end{cases} = 238,407.2$$

• Stress in Element No. 1 is 238.4 MPa (tension)

Author Information

Dr. Gul Ahmed Jokhio

is a Senior Lecturer at FKASA, UMP. He completed his PhD from Imperial College London in 2012.

