Finite Element Analysis

Plane Truss Example

by
Dr. Gul Ahmed Jokhio
Faculty of Civil Engineering and Earth Resources
okhio@ump.edu.my

Communitising Technology

Lesson Outcomes

- At the end of this lesson, the student should be able to:
- Apply the arbitrarily oriented bar element equations to plane truss example
- Evaluate the plane truss using Finite Element Analysis

Plane Truss

- Analyze the plane truss shown. Relevant data is given as:
- $A=2 \mathrm{~cm}^{2}$
- $E=200 G P a$

Communitising Technology

Discretization

- The structure has already been discretized
- It consists of:
- 3 nodes
- 3 elements
- Element 1 is connected to nodes 1 and 2, element 2 is connected to nodes 1 and 3 , and element 3 is connected to nodes 2 and 3
- Node 1 is pinned i.e. it can not move in either x or y direction
- Node 2 is supported by a roller i.e. it can not move in the y direction
- 60 kN force is applied on node 3
- Element lengths are also given: Element 1 is 6 m long while element 2 and element 3 are each 4.767 m long

Element Stiffness Matrices

- Element stiffness matrices can be obtained by using the stiffness matrix for an arbitrarily oriented bar element developed in the previous lecture
$\cdot[k]=\frac{A E}{L}\left[\begin{array}{rlrl}C^{2} & C S & -C^{2} & -C S \\ C S & S^{2} & -C S & -S^{2} \\ -C^{2} & -C S & C^{2} & C S \\ -C S & -S^{2} & C S & S^{2}\end{array}\right]$
- The values required for each element, therefore, are: A, E, L, C and S
- We will also tag along the relevant degrees of freedom to which an element is connected for ease in the assembly process

Stiffness Matrix for Element 1

- $\theta=0, C=1, S=0$
- $A=2 \mathrm{~cm}^{2}=0.0002 \mathrm{~m}^{2}$
- $E=200 G P a=2 \times 10^{8} \mathrm{kN} / \mathrm{m}^{2}$
- $L=6 \mathrm{~m}$
- $\frac{A E}{L}=\frac{0.0002 \times 2 \times 10^{8}}{6}=\begin{gathered}6,666.67 \mathrm{kN} / \mathrm{m} \\ \mathrm{u} 1 \mathrm{v} 1 \mathrm{u} \quad \mathrm{v} 2\end{gathered}$
- $\left[k^{(1)}\right]=6666.67\left[\begin{array}{cccc}1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \begin{aligned} & u 1 \\ & v 1 \\ & u 2 \\ & v 2\end{aligned}$

Communitising Technology

Stiffness Matrix for Element 2

- $\theta=51^{\circ}, C=0.629, S=0.777$
- $C^{2}=0.396, S^{2}=0.604, C S=0.489$
- $A=2 \mathrm{~cm}^{2}=0.0002 \mathrm{~m}^{2}$
- $E=200 G P a=2 \times 10^{8} \mathrm{kN} / \mathrm{m}^{2}$
- $L=4.767 \mathrm{~m}$
- $\frac{A E}{L}=\frac{0.0002 \times 2 \times 10^{8}}{4.767}=8,391 \mathrm{kN} / \mathrm{m}$
- $\left[k^{(2)}\right]=8391\left[\begin{array}{rlrl}u 1 & v 1 & u 3 & v 3 \\ 0.396 & 0.489 & -0.396 & -0.489 \\ 0.489 & 0.604 & -0.489 & -0.604 \\ -0.396 & -0.489 & 0.396 & 0.489 \\ -0.489 & -0.604 & 0.489 & 0.604\end{array}\right] \begin{gathered}u 1 \\ v 1 \\ \text { u3 } \\ \text { v3 }\end{gathered}$

Stiffness Matrix for Element 3

- $\theta=129^{\circ}, C=-0.629, S=0.777$
- $C^{2}=0.396, S^{2}=0.604, C S=-0.489$
- $A=2 \mathrm{~cm}^{2}=0.0002 \mathrm{~m}^{2}$
- $E=200 G P a=2 \times 10^{8} \mathrm{kN} / \mathrm{m}^{2}$
- $L=4.767 \mathrm{~m}$
- $\frac{A E}{L}=\frac{0.0002 \times 2 \times 10^{8}}{4.767}=8,391 \mathrm{kN} / \mathrm{m}$
- $\left[k^{(3)}\right]=8391\left[\begin{array}{cccc}u 2 & v 2 & u 3 & v 3 \\ 0.396 & -0.489 & -0.396 & 0.489 \\ -0.489 & 0.604 & 0.489 & -0.604 \\ -0.396 & 0.489 & 0.396 & -0.489 \\ 0.489 & -0.604 & -0.489 & 0.604\end{array}\right] \begin{gathered}u 2 \\ v 2 \\ u 3 \\ v 3\end{gathered}$

Assembly of Structure Stiffness Matrix

- Using direct stiffness assembly:
- $[K]=$
$\left[\begin{array}{cccccc}9989.51 & 4103.2 & -6666.67 & 0 & -3322.84 & -4103.2 \\ 4103.2 & 5068.16 & 0 & 0 & -4103.2 & -5068.16 \\ -6666.67 & 0 & 9989.51 & -4103.2 & -3322.84 & 4103.2 \\ 0 & 0 & -4103.2 & 5068.16 & 4103.2 & -3322.84 \\ -3322.84 & -4103.2 & -3322.84 & 4103.2 & 6645.68 & 0 \\ -4103.2 & -5068.16 & 4103.2 & -3322.84 & 0 & 10136.32\end{array}\right]$

System of Equations

图

$$
\left[\begin{array}{cccccc}
9989.51 & 4103.2 & -6666.67 & 0 & -3322.84 & -4103.2 \\
4103.2 & 5068.16 & 0 & 0 & -4103.2 & -5068.16 \\
-6666.67 & 0 & 9989.51 & -4103.2 & -3322.84 & 4103.2 \\
0 & 0 & -4103.2 & 5068.16 & 4103.2 & -5068.16 \\
-3322.84 & -4103.2 & -3322.84 & 4103.2 & 6645.68 & 0 \\
-4103.2 & -5068.16 & 4103.2 & -5068.16 & 0 & 10136.32
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
v_{1} \\
u_{2} \\
v_{2} \\
u_{3} \\
v_{3}
\end{array}\right\}
$$

Communitising Technology

Boundary Conditions

- We know that:
- $u_{1}=v_{1}=v_{1}=0$
- $f_{2 x}=f_{3 y}=0$, and $f_{3 x}=60 k N$
- These boundary conditions can be applied by removing the $1^{\text {st }}, 2^{\text {nd }}$, and $4^{\text {th }}$ rows and columns from the system of equations and inserting the relevant values in the force vector

Reduced System of Equations

- The reduced system of equations is given as:
- $\left\{\begin{array}{c}0 \\ 60 \\ 0\end{array}\right\}=$

$$
\left[\begin{array}{ccc}
9989.51 & -3322.84 & 4103.2 \\
-3322.84 & 6645.68 & 0 \\
4103.2 & 0 & 10136.32
\end{array}\right]\left\{\begin{array}{l}
u_{2} \\
u_{3} \\
v_{3}
\end{array}\right\}
$$

- This system of equations can be solved using any method applicable to such systems

Solution

- From the solution of the system of equations, we get:
- $u_{2}=0.0045 \mathrm{~m}=4.5 \mathrm{~mm}$
- $u_{3}=0.011278 \mathrm{~m}=11.28 \mathrm{~mm}$
- $v_{3}=-0.00182=-1.82 \mathrm{~mm}$
- These values show that both nodes 2 and 3 are moving towards the right by 4.5 mm and 11.28 mm , respectively (negative values would have suggested leftwards movement)
- Node 3 is also moving 1.82 mm downwards (a positive value would have suggested upwards movement)

Support Reactions

- The unknown support reactions can be obtained by inserting the calculated deformations into the equations that we removed earlier
- $f_{1 x}=-6666.67 u_{2}-3322.84 u_{3}-4103.2 v_{3}=$ $-60.0045 \cong-60 \mathrm{kN}$
- $f_{1 y}=-4103.2 u_{3}-5068.16 v_{3}=-37.0454$
- $f_{2 y}=-4103.2 u_{2}+4103.2 u_{3}-5068.16 v_{3}=$ 37.0454
- We can verify these results by applying simple equilibrium to the structure

Verification through Equilibrium

- $\sum M @ 1=0$
- $60 \times 3.7047-f_{2 y} \times 6=0$
- $f_{2 y}=37.047 k N$
- $\sum F_{y}=0$
- $f_{1 y}+37.047=0$
- $f_{1 y}=-37.047 k N$
- $\sum F_{x}=0$
- $f_{1 x}+60=0$
- $f_{1 x}=-60 k N$
- We can see that the values obtained from FEA are, within limit, equal to those obtained by simple equilibrium equations

Author Information

Dr. Gul Ahmed Jokhio

is a Senior Lecturer at FKASA, UMP. He completed his PhD from Imperial College London in 2012.

