For updated version, please click on http://ocw.ump.edu.my

Finite Element Analysis

Plane Truss Example

by Dr. Gul Ahmed Jokhio Faculty of Civil Engineering and Earth Resources jokhio@ump.edu.my

Communitising Technology

Lesson Outcomes

- At the end of this lesson, the student should be able to:
 - Apply the arbitrarily oriented bar element equations to plane truss example
 - Evaluate the plane truss using Finite Element
 Analysis

Plane Truss

- Analyze the plane truss shown. Relevant data is given as:
- $A = 2cm^2$
- E = 200GPa4.767m 4.767m 4.767m 51° 51° 60 kN 3 4.767m 51° 51° 60 kN 3 4.767m 51° 51° 60 kN 3 51° 60 kN 3 51° 60 kN 3 51° 60 kN 3 60 kN 3

Discretization

- The structure has already been discretized
- It consists of:
 - 3 nodes
 - 3 elements
 - Element 1 is connected to nodes 1 and 2, element 2 is connected to nodes 1 and 3, and element 3 is connected to nodes 2 and 3
 - Node 1 is pinned i.e. it can not move in either x or y direction
 - Node 2 is supported by a roller i.e. it can not move in the ydirection
 - 60kN force is applied on node 3
 - Element lengths are also given: Element 1 is 6m long while element 2 and element 3 are each 4.767m long

Element Stiffness Matrices

 Element stiffness matrices can be obtained by using the stiffness matrix for an arbitrarily oriented bar element developed in the previous lecture

•
$$[k] = \frac{AE}{L} \begin{bmatrix} C^2 & CS & -C^2 & -CS \\ CS & S^2 & -CS & -S^2 \\ -C^2 & -CS & C^2 & CS \\ -CS & -S^2 & CS & S^2 \end{bmatrix}$$

- The values required for each element, therefore, are: A, E, L, C and S
- We will also tag along the relevant degrees of freedom to which an element is connected for ease in the assembly process

Stiffness Matrix for Element 1

- $\theta = 0, C = 1, S = 0$
- $A = 2cm^2 = 0.0002m^2$
- $E = 200GPa = 2 \times 10^8 kN/m^2$
- L = 6m

•
$$\frac{AE}{L} = \frac{0.0002 \times 2 \times 10^8}{6} = 6,666.67 kN/m$$

• $[k^{(1)}] = 6666.67 \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}_{v_1}^{u_1}$

Stiffness Matrix for Element 2

- $\theta = 51^{\circ}, C = 0.629, S = 0.777$
- $C^2 = 0.396, S^2 = 0.604, CS = 0.489$
- $A = 2cm^2 = 0.0002m^2$
- $E = 200GPa = 2 \times 10^8 kN/m^2$
- L = 4.767m

•
$$\frac{AE}{L} = \frac{0.0002 \times 2 \times 10^8}{4.767} = 8,391 kN/m$$

• $[k^{(2)}] = 8391 \begin{bmatrix} u^1 & v^1 & u^3 & v^3 \\ 0.396 & 0.489 & -0.396 & -0.489 \\ 0.489 & 0.604 & -0.489 & -0.604 \\ -0.396 & -0.489 & 0.396 & 0.489 \\ -0.489 & -0.604 & 0.489 & 0.604 \end{bmatrix} \begin{bmatrix} u^1 & v^1 & u^3 & v^3 \\ u^1 & v^1 & u^3 & v^3 \\ u^1 & v^1 & u^3 & v^3 \\ u^2 & v^3 & v^3 & v^3 \\ u^3 & v^3 & v^3 & v^3 & v^3 \\ u^3 & v^3 & v^3 & v^3 & v^3 \\ u^3 & v^3 & v^3 & v^3 & v^3 & v^3 \\ u^3 & v^3 & v^3 & v^3 & v^3 & v^3 \\ u^3 & v^3 & v^3 & v^3 & v^3 & v^3 \\ u^3 & v^3 & v^3 & v^3 & v^3 & v^3 \\ u^3 & v^3 \\ u^3 & v^3 & v^3$

Stiffness Matrix for Element 3

- $\theta = 129^{\circ}, C = -0.629, S = 0.777$
- $C^2 = 0.396, S^2 = 0.604, CS = -0.489$
- $A = 2cm^2 = 0.0002m^2$
- $E = 200GPa = 2 \times 10^8 kN/m^2$
- L = 4.767m

•
$$\frac{AE}{L} = \frac{0.0002 \times 2 \times 10^8}{4.767} = 8,391 kN/m$$

• $[k^{(3)}] = 8391 \begin{bmatrix} u^2 & v^2 & u^3 & v^3 \\ 0.396 & -0.489 & -0.396 & 0.489 \\ -0.489 & 0.604 & 0.489 & -0.604 \\ -0.396 & 0.489 & 0.396 & -0.489 \\ 0.489 & -0.604 & -0.489 & 0.604 \end{bmatrix} \begin{bmatrix} u^2 & v^2 & u^3 & v^3 \\ v^2 & v^2 & u^3 & v^3 \\ v^2 & v^2 & u^3 & v^3 \\ v^2 & v^2 & u^3 & v^3 \\ v^3 & v^3 & v^3 & v^3 \\ v^3 & v^3 & v^3 & v^3 \\ v^3 & v^3 & v^3 & v^3 & v^3 \\ v^3 & v^3 & v^3 & v^3 & v^3 & v^3 \\ v^3 & v^3 & v^3 & v^3 & v^3 & v^3 \\ v^3 & v^3 & v^3 & v^3 & v^3 & v^3 \\ v^3 & v^3 & v^3 & v^3 & v^3 & v^3 \\ v^3 & v^3 \\ v^3 & v^3$

Assembly of Structure Stiffness Matrix

• Using direct stiffness assembly:

٠	[K] =					
	[9989.51	4103.2	-6666.67	0	-3322.84	–4103.2 ך
	4103.2	5068.16	0	0	-4103.2	-5068.16
	-6666.67	0	9989.51	-4103.2	-3322.84	4103.2
	0	0	-4103.2	5068.16	4103.2	-3322.84
	-3322.84	-4103.2	-3322.84	4103.2	6645.68	0
	L -4103.2	-5068.16	4103.2	-3322.84	0	10136.32

System of Equations

Boundary Conditions

- We know that:
- $u_1 = v_1 = v_1 = 0$
- $f_{2x} = f_{3y} = 0$, and $f_{3x} = 60kN$
- These boundary conditions can be applied by removing the 1st, 2nd, and 4th rows and columns from the system of equations and inserting the relevant values in the force vector

Reduced System of Equations

- The reduced system of equations is given as:
- $\cdot \begin{cases} 0\\60\\0 \end{cases} = \\ \begin{bmatrix} 9989.51 & -3322.84 & 4103.2\\-3322.84 & 6645.68 & 0\\4103.2 & 0 & 10136.32 \end{bmatrix} \begin{pmatrix} u_2\\u_3\\v_3 \end{pmatrix}$
- This system of equations can be solved using any method applicable to such systems

Solution

- From the solution of the system of equations, we get:
- $u_2 = 0.0045m = 4.5mm$
- $u_3 = 0.011278m = 11.28mm$
- $v_3 = -0.00182 = -1.82mm$
- These values show that both nodes 2 and 3 are moving towards the right by 4.5mm and 11.28mm, respectively (negative values would have suggested leftwards movement)
- Node 3 is also moving 1.82mm downwards (a positive value would have suggested upwards movement)

Support Reactions

- The unknown support reactions can be obtained by inserting the calculated deformations into the equations that we removed earlier
- $f_{1x} = -6666.67u_2 3322.84u_3 4103.2v_3 = -60.0045 \cong -60kN$
- $f_{1y} = -4103.2u_3 5068.16v_3 = -37.0454$
- $f_{2y} = -4103.2u_2 + 4103.2u_3 5068.16v_3 =$ 37.0454
- We can verify these results by applying simple equilibrium to the structure

Verification through Equilibrium

- $\sum M@1 = 0$
- $60 \times 3.7047 f_{2y} \times 6 = 0$
- $f_{2y} = 37.047kN$
- $\sum F_y = 0$
- $f_{1y} + 37.047 = 0$
- $f_{1y} = -37.047kN$
- $\sum F_{\chi} = 0$
- $f_{1x} + 60 = 0$
- $f_{1x} = -60kN$
- We can see that the values obtained from FEA are, within limit, equal to those obtained by simple equilibrium equations

Author Information

Dr. Gul Ahmed Jokhio

is a Senior Lecturer at FKASA, UMP. He completed his PhD from Imperial College London in 2012.

Communitising Technology