Finite Element Analysis

Arbitrarily Oriented Bar Element in 2 Dimensions

by
Dr. Gul Ahmed Jokhio
Faculty of Civil Engineering and Earth Resources okhio@ump.edu.my

Communitising Technology

Lesson Outcomes

- At the end of this lesson, the student should be able to:
- Understand the concept of local and global coordinate systems
- Transform the element equations of a bar element from local to global coordinate systems

Stiffness Matrix of a Bar Element

- Stiffness Matrix for a bar element was developed in the previous lecture
- $[k]=\frac{A E}{L}\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$
- This stiffness matrix is applicable to any bar element oriented in such a way that the x-axis is directed from node 1 to 2
- It is not the case always because bar elements are used in trusses, where some of these elements are vertical while others are inclined

Communitising Technology

Arbitrary Orientation of Bar Elements

- In the example truss shown below in Figure 1
- Elements 7 to 13 are not horizontal whereas elements 5 and 6 are oriented in the opposite direction to elements 1 to 4

Communitising Technology

Arbitrary Orientation of Bar Elements (Continued)

- Generally, when elements are not connected to consecutive nodes, the element is assumed to be orientated from the lower node number to the higher node number
- Therefore, the local x -axis of each element is orientated going from its lower node number to the higher node number
- The global x-axis is for the entire structure and is not affected by the orientation of individual elements

Arbitrary Orientation of Bar Elements

(Continued)

- Figure below shows global x-axis and local xaxes for all the elements connected to node 3
- Superscripts indicate element numbers

Arbitrary Orientation of Bar Elements (Continued)

- In order to use the stiffness matrix for the bar element developed earlier, the same will need to be transformed from the local to global coordinate systems
- After transformation, the stiffness matrix will be applicable to a bar element arbitrarily oriented in any direction in the $x-y$ plane
- The transformation between a local coordinate system and a global coordinate system with angle
θ between the two systems is described next

Transformation in 2 Dimensions

- Say a vector is arbitrarily oriented
- $\mathbf{d}=u \mathbf{i}+v \mathbf{j}=u^{\prime} \mathbf{i}^{\prime}+v^{\prime} \mathbf{j}$
- Using vector addition
- $\mathbf{a}+\mathbf{b}=\mathbf{i}$
- $|\mathbf{a}|=|\mathbf{i}| \cos \theta$
- \mathbf{i} is a unit vector; $\therefore|\mathbf{i}|=$
- $|\mathbf{a}|=\cos \theta$

- $|\mathbf{b}|=\sin \theta$

Transformation in 2 Dimensions (Continued)

- $\mathbf{a}=|\mathbf{a}| \mathbf{i}^{\prime}=(\cos \theta) \mathbf{i}^{\prime}$
- $\mathbf{b}=|\mathbf{b}|\left(-\mathbf{j}^{\prime}\right)=(\sin \theta)\left(-\mathbf{j}^{\prime}\right)$
$\cdot \mathbf{i}=\cos \theta \mathbf{i}^{\prime}-\sin \theta \mathbf{j}^{\prime}$
- $\mathbf{a}^{\prime}+\mathbf{b}^{\prime}=\mathbf{j}$
- $\mathbf{a}^{\prime}=(\cos \theta) \mathbf{j}^{\prime}$
- $\mathbf{b}^{\prime}=\sin \theta \mathbf{i}^{\prime}$
- $\mathbf{j}=\sin \theta \mathbf{i}^{\prime}+\cos \theta \mathbf{j}^{\prime}$

Communitising Technology

Transformation in 2 Dimensions (Continued)

- $u\left(\cos \theta \mathbf{i}^{\prime}-\sin \theta \mathbf{j}^{\prime}\right)+$ $v\left(\sin \theta \mathbf{i}^{\prime}+\cos \theta \mathbf{j}^{\prime}\right)=u^{\prime} \mathbf{i}^{\prime}+v^{\prime} \mathbf{j}^{\prime}$
- $u \cos \theta+v \sin \theta=u^{\prime}$
- $-u \sin \theta+v \cos \theta=v^{\prime}$
- In matrix form we can write as:
- $\left\{\begin{array}{l}u^{\prime} \\ v^{\prime}\end{array}\right\}=\left[\begin{array}{cc}C & S \\ -S & C\end{array}\right]\left\{\begin{array}{l}u \\ v\end{array}\right\}$
- $C=\cos \theta$ and $S=\sin \theta$

Transformation in 2 Dimensions (Continued)

- $\left\{d^{\prime}\right\}=[T]\{d\}$
- $\{d\}=\left\{\begin{array}{l}u \\ v\end{array}\right\}$
- $\left\{d^{\prime}\right\}=\left\{\begin{array}{c}u^{\prime} \\ v^{\prime}\end{array}\right\}$
- $[T]=\left[\begin{array}{cc}C & S \\ -S & C\end{array}\right]$
- This [T] is known as the transformation matrix. It can be used to make any transformation between two coordinate systems

Communitising Technology

Global Stiffness Matrix for a Bar Element

- The nodal deformations of an arbitrarily orientated element will have components in global x and y directions
- These components are referred to as u and v
- An arbitrarily orientated bar element, therefore, will have 2 Degrees of Freedom (DOF) per node
- Using the transformation matrix developed, we can write the local element nodal deformations into global nodal deformations as:
- $\left\{\begin{array}{l}u_{1}^{\prime} \\ v_{1}^{\prime}\end{array}\right\}=\left[\begin{array}{cc}C & S \\ -S & C\end{array}\right]\left\{\begin{array}{l}u_{1} \\ v_{1}\end{array}\right\}$
- And for the other end:
- $\left\{\begin{array}{l}u_{2}^{\prime} \\ v_{2}^{\prime}\end{array}\right\}=\left[\begin{array}{cc}C & S \\ -S & C\end{array}\right]\left\{\begin{array}{l}u_{2} \\ v_{2}\end{array}\right\}$

Global Stiffness Matrix for a Bar Element (Continued)

- For both ends of the element, therefore:
- $\left\{\begin{array}{l}u_{1}^{\prime} \\ v_{1}^{\prime} \\ u_{2}^{\prime} \\ v_{2}^{\prime}\end{array}\right\}=\left[\begin{array}{cccc}C & S & 0 & 0 \\ -S & C & 0 & 0 \\ 0 & 0 & C & S \\ 0 & 0 & -S & C\end{array}\right]\left\{\begin{array}{l}u_{1} \\ v_{1} \\ u_{2} \\ v_{2}\end{array}\right\}$
- Here, the transformation matrix is obtained as:
- $[T]=\left[\begin{array}{cccc}C & S & 0 & 0 \\ -S & C & 0 & 0 \\ 0 & 0 & C & S \\ 0 & 0 & -S & C\end{array}\right]$

Communitising Technology

Global Stiffness Matrix for a Bar Element (Continued)

- $\left\{d^{\prime}\right\}=[T]\{d\}$
- $\left\{f^{\prime}\right\}=[T]\{f\}$
- $\left\{\begin{array}{l}f_{1 x}^{\prime} \\ f_{1 y}^{\prime} \\ f_{2 x}^{\prime} \\ f_{2 y}^{\prime}\end{array}\right\}=\frac{A E}{L}\left[\begin{array}{cccc}1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{c}u^{\prime}{ }_{1} \\ v_{1}^{\prime} \\ u^{\prime} \\ v_{2}^{\prime}\end{array}\right\}$
- $\left\{f^{\prime}\right\}=\left[k^{\prime}\right]\left\{d^{\prime}\right\}$
- $[T]\{f\}=\left[k^{\prime}\right][T]\{d\}$
- $\{f\}=[T]^{T}\left[k^{\prime}\right][T]\{d\}$
- $[k]=[T]^{T}\left[k^{\prime}\right][T]$

Global Stiffness Matrix for a Bar Element (Continued)

- After performing the matrix multiplication:
$\cdot[k]=\frac{A E}{L}\left[\begin{array}{rlrl}C^{2} & C S & -C^{2} & -C S \\ C S & S^{2} & -C S & -S^{2} \\ -C^{2} & -C S & C^{2} & C S \\ -C S & -S^{2} & C S & S^{2}\end{array}\right]$
- This is the global stiffness matrix for any bar element arbitrarily orientated in any direction
- Note that for an element orientated in positive x direction, $\theta=0, C=1, S=0$
- And for an element orientated in positive y-direction, $\theta=90^{\circ}, C=0, S=1$

Author Information

Dr. Gul Ahmed Jokhio

is a Senior Lecturer at FKASA, UMP. He completed his PhD from Imperial College London in 2012.

