Finite Element Analysis

Structural Analysis Example using Spring Elements

by
Dr. Gul Ahmed Jokhio
Faculty of Civil Engineering and Earth Resources iokhio@ump.edu.my

Communitising Technology

Lesson Outcomes

- At the end of this lecture, the student should be able to:
- Understand the concept of Element Libraries
- Use the previously developed element formulation for solving an example structure
- Understand and interpret the Finite Element Analysis results
- Draw the deformed shape based on FEA results

Element Libraries

- We do not have to derive element equations every time we want to analyze a structure
- A huge number of element formulations are available in the form of element libraries
- We can directly use these element libraries and go directly to the assembly step
- We will now use the spring element stiffness matrices developed in the previous lecture for the solution of a slightly more complicated problem by starting directly from the assembly step

Example Structure

- Solve for the unknown reactions at nodes 1 and 5; and unknown displacements at nodes 2,3 and 4 . Also find the deformations and forces in individual elements.

Stiffness Matrix

- Using the element equations developed previously:
- $\left[k^{(1)}\right]=\left[k^{(2)}\right]=\left[\begin{array}{cc}21 & -21 \\ -21 & 21\end{array}\right]$
- $\left[k^{(3)}\right]=\left[k^{(4)}\right]=\left[\begin{array}{cc}24 & -24 \\ -24 & 24\end{array}\right]$
- Assembling these matrices according to element connectivity
- $\left[k^{(1)}\right]=\left[\begin{array}{cc}u_{1} & u_{2} \\ 21 & -21 \\ -21 & 21\end{array}\right] \begin{aligned} & u_{1} \\ & u_{2}\end{aligned}$
- $[K]=\left[\begin{array}{ccccc}21 & -21 & 0 & 0 & 0 \\ -21 & 21 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$

Stiffness Matrix (Continued)

$$
u_{2} \quad u_{3}
$$

- $\left[k^{(2)}\right]=\left[\begin{array}{cc}21 & -21 \\ -21 & 21\end{array}\right] \begin{aligned} & u_{2} \\ & u_{3}\end{aligned}$
- $[K]=\left[\begin{array}{ccccc}21 & -21 & 0 & 0 & 0 \\ -21 & 42 & -21 & 0 & 0 \\ 0 & -21 & 21 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
- $\left[k^{(3)}\right]=\left[\begin{array}{cc}u_{3} & u_{4} \\ 24 & -24 \\ -24 & 24\end{array}\right] \begin{gathered} \\ u_{3} \\ u_{4}\end{gathered}$

Stiffness Matrix (Continued)

- $[K]=\left[\begin{array}{cccccc}21 & -21 & 0 & 0 & 0 \\ -21 & 42 & -21 & 0 & 0 \\ 0 & -21 & 45 & -24 & 0 \\ 0 & 0 & -24 & 24 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
- $\left[k^{(4)}\right]=\left[\begin{array}{cc}24 & -24 \\ -24 & 24\end{array}\right] \begin{aligned} & u_{4} \\ & u_{5}\end{aligned}$
- $[K]=\left[\right.$| 21 | -21 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: |
| -21 | 42 | -21 | | 0 |
| 0 | | | | |
| 0 | -21 | 45 | -24 | 0 |
| 0 | 0 | -24 | 48 | -24 |
| 0 | 0 | 0 | -24 | 24 |$]$

Communitising Technology

Equations and Boundary Conditions

- $\{F\}=[K]\{d\}$

- Nodes 1 and 5 are fixed
- It means $u_{1}=u_{5}=0$
- We can remove the relevant rows and columns
- $\left\{\begin{array}{l}0 \\ 6 \\ 0\end{array}\right\}=\left[\begin{array}{ccc}42 & -21 & 0 \\ -21 & 45 & -24 \\ 0 & -24 & 48\end{array}\right]\left\{\begin{array}{l}u_{2} \\ u_{3} \\ u_{4}\end{array}\right\}$

Solution: Forward Elimination

- The system of equations to be solved is
- $\left\{\begin{array}{l}0 \\ 6 \\ 0\end{array}\right\}=\left[\begin{array}{ccc}42 & -21 & 0 \\ -21 & 45 & -24 \\ 0 & -24 & 48\end{array}\right]\left\{\begin{array}{l}u_{2} \\ u_{3} \\ u_{4}\end{array}\right\}$
- First step is to make the augmented matrix
$\cdot\left[\begin{array}{ccccc}42 & -21 & 0 & \vdots & 0 \\ -21 & 45 & -24 & \vdots & 6 \\ 0 & -24 & 48 & \vdots & 0\end{array}\right]$

Solution: Forward Elimination (Continued)

- Apply $1^{\text {st }}$ row operation: $R_{2}+\frac{R_{1}}{2}$
$\cdot\left[\begin{array}{ccccc}42 & -21 & 0 & \vdots & 0 \\ 0 & 34.5 & -24 & \vdots & 6 \\ 0 & -24 & 48 & \vdots & 0\end{array}\right]$
- Apply $2^{\text {nd }}$ row operation: $R_{3}+\frac{24 R_{2}}{34.5}$
$\cdot\left[\begin{array}{ccccc}42 & -21 & 0 & \vdots & 0 \\ 0 & 34.5 & -24 & \vdots & 6 \\ 0 & 0 & 31.3 & \vdots & 4.174\end{array}\right]$

Solution: Back Substitution

$\cdot\left[\begin{array}{ccccc}42 & -21 & 0 & \vdots & 0 \\ 0 & 34.5 & -24 & \vdots & 6 \\ 0 & 0 & 31.3 & \vdots & 4.174\end{array}\right]$

- $u_{4}=\frac{4.174}{31.3}=0.1334 \mathrm{~m}=13.34 \mathrm{~cm}$
- $34.5 u_{3}-24 u_{4}=6$
- $u_{3}=0.2667 \mathrm{~m}=26.67 \mathrm{~cm}$
- $42 u_{2}-21 u_{3}=0$
- $u_{2}=0.1334 \mathrm{~m}=13.34 \mathrm{~cm}$

Solution: Back Substitution (Continued)

- Going back to the 2 equations we removed earlier
- $F_{1}=21 u_{1}-21 u_{2}=-21 \times 0.1334=$
$-2.8 k N$
- $F_{5}=-24 u_{4}+24 u_{5}=-24 \times 0.1334=$
- 3.2kN

Element Deformations and Forces

- $\delta^{(1)}=u_{2}-u_{1}=0.1334-0=0.1334 m$
- $T^{(1)}=k^{(1)} \delta^{(1)}=21 \times 0.1334=2.8 k N$
- $\delta^{(2)}=u_{3}-u_{2}=0.2667-0.1334=0.1334 m$
- $T^{(2)}=k^{(2)} \delta^{(2)}=21 \times 0.1334=2.8 k N$
- $\delta^{(3)}=u_{4}-u_{3}=0.1334-0.2667=-0.1334 m$
- $T^{(3)}=k^{(3)} \delta^{(3)}=24 \times(-0.1334)=-3.2 k N$
- $\delta^{(4)}=u_{5}-u_{4}=0-0.1334=-0.1334 m$
- $T^{(4)}=k^{(4)} \delta^{(4)}=24 \times(-0.1334)=-3.2 k N$

Element Deformations and Forces

- Element deformations and forces are tensile if positive and compressive if negative
- It can be noted that elements 3 and 4 are taking the larger forces because these elements have higher stiffness

Communitising Technology

Deformed Shape

Communitising Technology

Author Information

Dr. Gul Ahmed Jokhio

is a Senior Lecturer at FKASA, UMP. He completed his PhD from Imperial College London in 2012.

