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Lesson Outcomes

• At the end of this lecture, the student should be 
able to:
– Understand the 8 steps of Finite Element Analysis

– Apply the 8 steps of Finite Element Analysis to 2DOF 
structural systems

– Formulate stiffness matrix for a spring element

– Use the spring element formulation to analyze 
structures consisting of spring type members

– Extract and interpret the results obtained from finite 
element analysis for spring elements



Example Structure (Spring)

• Consider the structure shown in Figure 1
• It consists of two springs connected end-to-end with a 

6kN force pulling each spring
• The left end of the structure is ‘fixed’
• The stiffness of each of the springs is given as ‘21 

kN/m’
• Now, we will use the 8 steps of FEA to analyze this 

structure

Figure 1



Step 1(a): Discretization

• This structure can be conveniently discretized into 3 nodes 
and 2 elements with element 1 connected to nodes 1 and 2 
and element 2 connected to nodes 2 and 3

• It is conventional to identify nodes with numbers written 
close to the nodes

• The elements are also identified with numbers; to 
distinguish element numbers from node numbers, these 
are generally enclosed in circles

• The discretized structure is shown in Figure 2

Figure 2



Step 1(b): Element Type

• To model this structure, it is best to use one 
dimensional spring elements with 2 nodes as shown in 
Figure 3

• The element type, therefore, is ‘linear spring’
• The following assumptions are made for this element:
• The spring obeys Hooke’s Law
• Resists forces only in the direction of the spring

Figure 3



Step 1(b): Element Type (Continued)

• Points 1 and 2 are the ‘nodes’

• f1 and f2 are the forces in local x-direction

• u1 and u2 are the local nodal displacements 
(also called nodal degrees of freedom)

• k is the spring constant or stiffness of the 
spring

• x is taken positive going from node 1 to node 
2



Step 2: Displacement Function

• A linear displacement function can be assumed for this 
element, shown in Figure 4 and given below:

• 𝑢 = 𝑎1 + 𝑎2𝑥
• It can be expressed in matrix form as:

• 𝑢 = 1 𝑥
𝑎1
𝑎2

Figure 4



Step 2: Displacement Function (Continued)

• We can input the nodal values to determine the 
coefficients:

• 𝑢 0 = 𝑢1 = 𝑎1
• 𝑢 𝐿 = 𝑢2 = 𝑎2𝐿 + 𝑢1

• 𝑎2 =
𝑢2−𝑢1

𝐿

• Therefore, expressed in nodal terms the 
displacement function becomes:

• 𝑢 =
𝑢2−𝑢1

𝐿
𝑥 + 𝑢1



Step 2: Displacement Function (Continued)

• Expressing in matrix form:

• 𝑢 = 1 −
𝑥

𝐿

𝑥

𝐿

𝑢1
𝑢2

• Or, alternatively;

• 𝑢 = 𝑁1 𝑁2
𝑢1
𝑢2

• where,

• 𝑁1 = 1 −
𝑥

𝐿

• 𝑁2 =
𝑥

𝐿

• These are called the ‘shape functions’

• 𝑁1 + 𝑁2 = 1

Figure 5



Step 3: Strain-Displacement and Stress-

Strain Relationships

• Strain-Displacement Relationship:

• Total element displacement (change in length) 
can be expressed mathematically as the 
displacement of the end-point minus the 
displacement of the starting point:

• 𝛿 = 𝑢 𝐿 − 𝑢 0 = 𝑢2 − 𝑢1
• Assuming constant strain throughout the 

element:

• 𝜀 =
𝛿

𝐿
=

𝑢2−𝑢1

𝐿



Step 3: Strain-Displacement and Stress-

Strain Relationships (Continued)

• Stress-Strain Relationship:

• For a spring element, this relationship can be 
expressed in terms of Force/Deformation

• 𝑇 = 𝑘𝛿

• 𝑇 = 𝑘 𝑢2 − 𝑢1
• Where, T is the force in the spring taken as 

positive if tensile



Step 4: Element Stiffness Equations and 

Matrix

• Considering the force in the spring to be positive if 
tensile and its value being T:

• 𝑓1 = −𝑇; 𝑓2= 𝑇

• 𝑇 = −𝑓1 = 𝑘 𝑢2 − 𝑢1
• 𝑇 = 𝑓2 = 𝑘 𝑢2 − 𝑢1
• 𝑓1 = 𝑘 𝑢1 − 𝑢2
• 𝑓2 = 𝑘 𝑢2 − 𝑢1

•
𝑓1
𝑓2

=
𝑘 −𝑘
−𝑘 𝑘

𝑢1
𝑢2



Step 4: Element Stiffness Equations and 

Matrix (Continued)

• This is the system of equations that represents a spring 
element

• The element stiffness matrix can be extracted from this 
system of equations as:

• 𝑘 =
𝑘 −𝑘
−𝑘 𝑘

• It is the local stiffness matrix. Note that it is a 
symmetric square matrix

• Since both the springs in the example structure are the 
same, we can use this stiffness matrix for the both of 
elements



Step 4: Element Stiffness Equations and 

Matrix (Continued)

•
𝑓1

1

𝑓2
1

=
21 −21
−21 21

𝑢1
1

𝑢2
1

•
𝑓2

2

𝑓3
2

=
21 −21
−21 21

𝑢2
2

𝑢3
2

• Where, the superscripts (1) and (2) represent the element numbers
• These can be expressed as element equations as:

• 𝑓1
1
= 21𝑢1

1
− 21𝑢2

1

• 𝑓2
1
= −21𝑢1

1
+ 21𝑢2

1

• 𝑓2
2
= 21𝑢2

2
− 21𝑢3

2

• 𝑓3
2
= −21𝑢2

2
+ 21𝑢3

2



Step 5(a): Assembly of Structural Stiffness 

Matrix

• The structure has 3 nodes

• Assuming the global forces at these nodes to 
be 𝐹1, 𝐹2, 𝐹3:

• To satisfy equilibrium:

• 𝐹1 = 𝑓1
1
= 21𝑢1

1
− 21𝑢2

1

• 𝐹2 = 𝑓2
1
+ 𝑓2

2

• 𝐹2 = −21𝑢1
1
+ 21𝑢2

1
+ 21𝑢2

2
− 21𝑢3

2



Step 5(a): Assembly of Structural Stiffness 

Matrix (Continued)

• 𝐹3 = 𝑓3
2 = −21𝑢2

2 + 21𝑢3
2

• Compatibility requires that:

• 𝑢2
1 = 𝑢2

2 = 𝑢2; 𝑢3
3 = 𝑢3; 𝑢1

1 = 𝑢1
• Therefore:

• 𝐹1 = 21𝑢1 − 21𝑢2
• 𝐹2 = −21𝑢1 + 21𝑢2 + 21𝑢2 − 21𝑢3 =
− 21𝑢1 + 42𝑢2 − 21𝑢3

• 𝐹3 = −21𝑢2 + 21𝑢3



Step 5(a): Assembly of Structural Stiffness 

Matrix (Continued)

• Re-arranging the element equations:

• 𝐹1 = 21𝑢1 − 21𝑢2 + 0𝑢3
• 𝐹2 = −21𝑢1 + 42𝑢2 − 21𝑢3
• 𝐹3 = 0𝑢1 − 21𝑢2 + 21𝑢3
• Matrix Form:

•

𝐹1
𝐹2
𝐹3

=
21 −21 0
−21 42 −21
0 −21 21

𝑢1
𝑢2
𝑢3



Step 5(a): Assembly of Structural Stiffness 

Matrix (Continued)

• Compact form:
• 𝐹 = 𝐾 𝑑 ; where:

• 𝐹 =
𝐹1
𝐹2
𝐹3

; 𝑑 =

𝑢1
𝑢2
𝑢3

; and

• 𝐾 =
21 −21 0
−21 42 −21
0 −21 21

• This is the assembled stiffness matrix for the 
structure



Step 5(a): Alternative Method (Direct 

Stiffness)

• Element stiffness matrices 
can be written with rows 
and columns labelled with 
the corresponding degrees 
of freedom (DOF)

• 𝑘 1 =
𝑢1 𝑢2

21 −21
−21 21

𝑢1
𝑢2

• 𝑘 2 =
𝑢2 𝑢3

21 −21
−21 21

𝑢2
𝑢3

• These can be expanded as:

• 𝑘 1 =

𝑢1 𝑢2 𝑢3
21 −21 0
−21 21 0
0 0 0

𝑢1
𝑢2
𝑢3

• 𝑘 2 =

𝑢1 𝑢2 𝑢3
0 0 0
0 21 −21
0 −21 21

𝑢1
𝑢2
𝑢3

• Adding the two:

• 𝐾 =

𝑢1 𝑢2 𝑢3
21 −21 0
−21 42 −21
0 −21 21

𝑢1
𝑢2
𝑢3



Step 5(b): Boundary Conditions

• The system of equations for the structure is:

•

𝐹1
𝐹2
𝐹3

=
21 −21 0
−21 42 −21
0 −21 21

𝑢1
𝑢2
𝑢3

• The stiffness matrix is singular i.e. this system has no 
solution 

• To get a solution we need to apply the boundary conditions
• The known boundary condition is:
• 𝑢1 = 0, since node 1 is fixed
• Also, we know that: 𝐹2 = 𝐹3 = 6𝑘𝑁



Step 5(b): Boundary Conditions (Continued)

• Applying this condition:

•

𝐹1
𝐹2
𝐹3

=
21 −21 0
−21 42 −21
0 −21 21

0
𝑢2
𝑢3

• 𝐹1 = −21𝑢2
• 6 = 42𝑢2 − 21𝑢3
• 6 = −21𝑢2 + 21𝑢3
• The last 2 equations can be expressed in matrix form as:

•
6
6

=
42 −21
−21 21

𝑢2
𝑢3

• Note that homogeneous boundary conditions can be directly applied by 
removing the rows and columns corresponding to the zero displacements 
from the system of equations



Step 6: Solution of the System of Equations

• The solution of this system of equations is straight forward

• 𝑢2 = 0.57𝑚

• 𝑢3 = 0.86𝑚
• These are the structural displacements. The displacements 

for the individual elements can be expressed using 
compatibility:

• 𝑢1
1
= 𝑢1 = 0

• 𝑢2
1
= 𝑢2

2
= 0.57𝑚

• 𝑢3
3
= 0.86𝑚



Step 7: Element Deformation and Forces

• For spring elements we are using deformations and 
forces instead of strains and stresses

• 𝛿(1) = 𝑢2 − 𝑢1 = 0.57 − 0 = 0.57𝑚 (elongation)

• 𝛿(1) = 𝑢3 − 𝑢2 = 0.86 − 0.57 = 0.29𝑚 (elongation)

• Tension in each of the elements can be determined as:

• 𝑇 = 𝑘𝛿

• 𝑇(1) = 21 × 0.57 = 11.97 𝑘𝑁 ≅ 12𝑘𝑁

• 𝑇(2) = 21 × 0.29 = 6.09 𝑘𝑁 ≅ 6𝑘𝑁



Step 8: Interpretation of Results

• In the previous step, we obtained the deformation and the tension 
in each of the elements

• Interpretation of these results is not directly related to Finite 
Element Analysis

• Whether the deformations are within the allowable limits and 
whether the tension would cause the material to fail is up to the 
engineer to decide

• Some of the students might have noticed that the tension obtained 
in the elements is only approximately equal to the values suggested 
by simple equilibrium

• This is because only 2 significant digits after the decimal were 
considered while solving the system of equations

• Increasing the number of significant digits will bring the solution 
closer to the exact solution, however, it will be exactly the same 
only if the computing machine being used has infinite precision
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