Project Management

Project Initiation

by
Dr Mohd Yazid

Faculty of Manufacturing Engineering myazid@ump.edu.my

Project Initiation

- Aims
- To organize project initiation by developing strategies to support project's goal.
- Expected Outcomes
- Students are able to set the objectives, scopes, develop team members, propose project comparison and select final project.
- References
- William, R.T. 2013. Project Management. Random Exports
- Heagney, J. 2012. Fundamentals of Project Management. American Management Association.
- Richardson and Gary, L. 2010. Project Management theory and practice. Taylor and Francis.

Content

- Objective of project initiation
- Setup objective and scopes
- Develop project team
- Propose projects for comparison
- Project selection

Objective of project initiation

1. Setup objective and scopes
2. Develop project team
3. Propose projects for comparison
4. Project selection

Setup objective and scopes

Good project management

The objective must:

- Consists of verb
- Expose the main features of product

Develop project team

Propose projects for comparison

To develop a sophisticated study lamp

1. Multi-function
2. Apply LED lighting
3. Able to clamp
4. Colorful
5. Focus lighting
6. Hidden wire

Scale of Evaluation

	Very poor	Poor	Fair	Average	Good	Excellent	
	0	1	2	3	4	5	
Low	Attractiveness					High	
High	Cost					Low	
Difficult	Feasibility					Easy	
Long	Time					Short	

Scoring of Alternative Projects

No.	Alternative Project	A	B	C	D	Total Score
1	Multi-function	5	2	2	2	11
2	Apply LED lighting	5	5	3	4	17
3	Able to clamp	4	4	2	3	13
4	Colorful	4	3	3	2	12
5	Focus lighting	5	4	3	3	15
6	Hidden wire	5	2	3	2	12

A: Attractiveness B: Cost C: Feasibility D: Time

Results of Screening

Project \# 2 Apply LED lighting
Project \# 5 Focus lighting
Project \# 3 Able to clamp

17 points
15 points
13 points

Project selection

Organizations usually use selection models and choose potential projects by relying on both qualitative and quantitative means. The selection is based on following criteria:

Net present value (NPV)

The difference between the present value of cash inflows and the present value of cash outflows. NPV is to analyze the profitability of a projected investment.

Payback period (PP)

The length of time required to recover the cost of an investment. Longer payback periods are typically not desirable for investment positions.

Internal rate return (IRR)

A metric used in capital budgeting measuring the profitability of potential investments.

Sample Project

Suppose a project has the following data:

- Initial investment (I) = RM 300,000
- Annual cost of operation = RM 20,000
- Planning horizon of 5 years

Expected annual revenues

- RM 100,000 for the first two years
- RM 200,000 for the next three years

Year	0	1	2	3	4	5
Costs	-300	-20	-20	-20	-20	-20
Revenues		100	100	200	200	200

(All revenues and costs are in thousand of RM)

Undiscounted Cash Flows Before Tax

Year	0	1	2	3	4	5
Cash Flow	-300	80	80	180	180	180
Cumulative Cash Flow	-300	-220	-140	40	220	400

- Net present value $(\mathrm{NPV})=400$ (in thousands)
- Payback Period $=2.78$ years

Discounted Cash Flows for Interest Rate $=\mathbf{1 0 \%}$

Year	0	1	2	3	4	5
Cash Flow	-300	80	80	180	180	180
Discount Factor	1	0.909	0.826	0.751	0.683	0.621
Discounted Cash Flow (DCF)	-300	72.72	66.08	135.18	122.94	111.78
Cumulative Discounted Cash Flow	-300	-227.28	-161.2	-26.02	96.92	208.70

- Net present value (NPV) $=208.7$ (in thousands)
- Payback Period $=3.21$ years

Discounted Cash Flows for Interest Rate $\mathbf{= 2 0 \%}$

Year	0	1	2	3	4	5
Cash Flow	-300	80	80	180	180	180
Discount Factor	1	0.833	0.694	0.579	0.482	0.402
Discounted Cash Flow (DCF)	-300	66.64	55.52	104.22	86.76	72.36
Cumulative Discounted Cash Flow	-300	-233.36	-177.84	-73.6	12.14	85.50

- Net present value $(\mathrm{NPV})=85.5$ (in thousands)
- Payback Period $=3.85$ years

Discounted Cash Flows for Interest Rate $\mathbf{= 2 5 \%}$

| Year | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cash Flow | -300 | 80 | 80 | 180 | 180 | 180 |
| Discount Factor | 1 | 0.800 | 0.640 | 0.512 | 0.410 | 0.328 |
| Discounted
 Cash Flow (DCF) | -300 | 64.00 | 51.20 | 92.16 | 73.80 | 59.04 |
| Cumulative
 Discounted
 Cash Flow | -300 | -236.00 | -184.60 | -92.44 | -18.64 | 40.40 |

- Net present value (NPV) $=40.4$ (in thousands)
- Payback Period $=4.32$ years

Discounted Cash Flows for Interest Rate $=\mathbf{3 0 \%}$

Year	0	1	2	3	4	5
Cash Flow	-300	80	80	180	180	180
Discount Factor	1	0.769	0.592	0.445	0.350	0.269
Discounted Cash Flow (DCF)	-300	61.52	47.36	81.90	63.00	48.42
Cumulative Discounted Cash Flow	-300	-238.42	-191.12	-109.22	-46.22	2.20

- Net present value (NPV) $=2.2$ (in thousands)
- Payback Period

$=4.95$ years

Discounted Cash Flows for Interest Rate $=\mathbf{3 5 \%}$

Year	0	1	2	3	4	5
Cash Flow	-300	80	80	180	180	180
Discount Factor	1	0.741	0.549	0.406	0.301	0.223
Discounted						
Cash Flow						
(DCF)						
Cumulative						
Discounted						
Cash Flow						

- Net present value $(\mathrm{NPV})=$
- Payback Period =

Internal Rate of Return (IRR)

Tax Consideration

Notion of depreciation used in computing after tax cash flows

1. Straight line method (here the amount to be depreciated is I / n in each period)
2. Sum of digits
3. Declining balance method

Cash Flow

Depreciation

Straight Line	60	60	60	60	60
Sum of digit	$\begin{gathered} 300(5 / 15) \\ =\mathbf{1 0 0} \end{gathered}$	$\begin{gathered} 300(4 / 15) \\ =\mathbf{8 0} \end{gathered}$	$\begin{gathered} 300(3 / 15) \\ =\mathbf{6 0} \end{gathered}$	$\begin{gathered} 300(2 / 15) \\ =\mathbf{4 0} \end{gathered}$	$\begin{gathered} 300(1 / 15) \\ =\mathbf{2 0} \end{gathered}$
Declining balance :	$\begin{gathered} 300(0.3) \\ =\mathbf{9 0} \end{gathered}$	$\begin{gathered} 300(0.09) \\ =27 \end{gathered}$	$\begin{gathered} 300(0.027) \\ =\mathbf{8 . 1} \end{gathered}$	$\begin{gathered} 300(0.0081) \\ =2.43 \end{gathered}$	$\begin{gathered} 300(0.000243= \\ \mathbf{0 . 7 2 9} \end{gathered}$

Computation of After Tax Cash Flows

Year			1	2	3	4	5
Cash Flow	a		80	80	180	180	180
Depreciation	b		60	60	60	60	60
Taxable Income	c	$\mathrm{a}-\mathrm{b}$	20	20	120	120	120
Tax (30\%)	d	tax $*$ c	6	6	36	36	36
After Tax Cash Flow	e	$\mathrm{a}-\mathrm{d}$	74	74	144	144	144

Undiscounted After Tax Cash Flows

Year	0	1	2	3	4	5
After Tax Cash Flow	-300	74	74	144	144	144
Cumulative Cash Flow	-300	-226	-152	-8	136	280

- Net present value $(\mathrm{NPV})=280$ (in thousands)
- Payback Period $=3.06$ years

After Tax Discounted Cash Flows for Interest Rate $=\mathbf{1 0 \%}$

Year	0	1	2	3	4	5
After Tax Cash Flow	-300	74	74	144	144	144
Discount Factor	1	0.909	0.826	0.751	0.683	0.621
Discounted Cash Flow (DCF)	-300	67.27	61.12	108.14	98.33	89.42
Cumulative Discounted Cash Flow	-300	-232.73	-171.61	-63.47	34.88	124.31

- Net present value (NPV) $=124.31$ (in thousands)
- Payback Period $=3.65$ years

After Tax Discounted Cash Flows for Interest Rate $\mathbf{= 2 0 \%}$

Year	0	1	2	3	4	5
After Tax Cash Flow	-300	74	74	144	144	144
Discount Factor	1	0.833	0.694	0.579	0.482	0.402
Discounted Cash Flow (DCF)	-300	61.64	51.36	83.38	69.41	57.89
Cumulative Discounted Cash Flow	-300	-238.36	-187.00	-103.62	-34.21	23.68

- Net present value $(\mathrm{NPV})=23.68$ (in thousands)
- Payback Period $=4.6$ years

After Tax Discounted Cash Flows for Interest Rate = 30\%

Year	0	1	2	3	4	5
After Tax Cash Flow	-300	74	74	144	144	144
Discount Factor	1	0.769	0.592	0.445	0.350	0.269
Discounted Cash Flow (DCF)	-300	56.91	43.81	65.52	50.40	38.74
Cumulative Discounted Cash Flow	-300	-243.09	-199.28	-133.76	-83.36	-44.62

- Net present value (NPV) $=-44.62$ (in thousands)
- Payback Period > 5 years

Internal Rate of Return

What is the best decision?

IOWER NPV HIGHERSHORTERPPIONGERIOWERIRRHIGHER

Conclusion

- Conclusion \#1
- Students are able to organize project initiation by setting the objectives, scopes, develop team members, proposing project comparison and selecting final project.

Project Management

Lecture 3

Dr Mohd Yazid

