

FACULTY OF ENGINEERING TECHNOLOGY

PRACTICAL TEST 1				
COURSE	:	ELECTRICAL FUNDAMENTALS AND		
		CIRCUIT		
		ANALYSIS II LABORATORY		
COURSE CODE	:	BTE 2132		
LECTURER	:	NOOR ZAIHAH BINTI JAMAL		
DATE	:	NOVEMBER 2016		
DURATION	:	1 HOUR		
SESSION/SEMESTER	:	SESSION 2016/2017 SEMESTER 1		
PROGRAM	:	ВТЕ		
NAME	:			
SECTION	:			
ID NUMBER	:			

1. This question paper consists of **ONE (1)** question only.

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO

This examination paper consists of five (5) printed pages including front page.

QUESTION 1

Equipment:

- Oscilloscope
- Function generator

Component:

Resistor: 330Ω
Capacitor: 0.47μF

Procedures:

1. Using the formula given, calculate the cutoff frequencies (in radians per second and in hertz). Record the values in table 1.

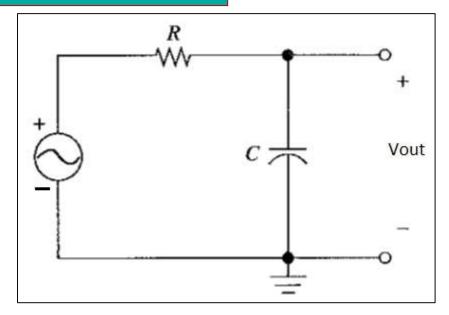
$$\omega_C = \frac{1}{\tau} = \frac{1}{RC}$$

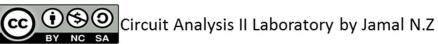
$$f_C = \frac{\omega_C}{2\pi} = \frac{1}{2\pi RC}$$

ω_c	rad/s
f_c	Hz

Table 1

- 2. Assemble the given circuit as in in fig. 1
- 3. Connect 2.0Vp (4.0Vp-p) at a frequency of f = 100Hz as input to the Ch1 of the oscilloscope.




Fig. 1

- 4. Connect Vout to the Ch2 of the oscilloscope.
- 5. Measure the amplitude of the sinusoidal output voltage *Vout*. Enter the result in table 2.
- 6. Increase the frequency of the signal generator as indicated in table 2.

Frequency	Amplitude (Vout)	
100 Hz		
200 Hz		
400 Hz		
800Hz		
1kHz		
2kHz		
4kHz		
8kHz		
10kHz		

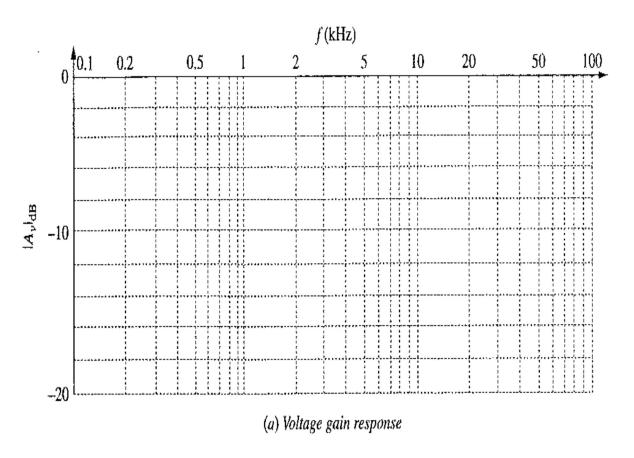
Table 2

7. Determine the cutoff frequency by adjusting the frequency of the generator until the output voltage has an amplitude of Vout = (0.707)(2.0Vp) = 1.41 Vp.

8. Record the measured cutoff frequency below.

1 ^		
1 <i>+</i>		
1 10		
1 26		
	·	

9. Use your result in table 2 to calculate the magnitude of the gain as a ratio of the amplitudes Vout/ Vin. Calculate the voltage gain in decibels as


$$[A_v]dB = log \frac{V_{out}}{V_{in}}$$

10. Record the calculated voltage gain for each frequency in table 3

Frequency (Hz)	Av = Vout/ Vin	Av (dB)
100 Hz		
200 Hz		
400 Hz		
800Hz		
1 kHz		
2kHz		
4kHz		
8kHz		
10kHz		

Table 3

11. Plot the data of table 3 (voltage gain in dB versus frequency) on the graph (a).

12. Compare the measured cutoff frequency **fc** of step 7 to the theoretical value predicted.