## BTU1113 PHYSICS: REVISION 5

## Magnetics

1. Draw magnetic lines and direction for a single bar and a single positive charge.


Figure 5
2. Based on the coordinate axis given in Figure 5, determine the direction of the unknown variables for an electron in the following figures. Given $\mathbf{B}$ is the magnetic field direction, $\mathbf{V}$ is the direction of the velocity and $\mathbf{F}$ is the direction of the force.
i.

ii.

iii.


$$
\begin{aligned}
& B=+z \\
& v=? \\
& F=+y
\end{aligned}
$$

3. A long, straight wire carries a current of 5 A is shown in Figure 1. At one instant, a proton, 4 mm from the wire travels at $1500 \mathrm{~m} / \mathrm{s}$ parallel to the wire and in the same direction as the current. Given vacuum permeability constant, $\mu_{\mathrm{o}}=1.26 \times 10^{-6}$


Figure 1
i. Find the magnitude and of the magnetic force acting on the proton due to the field caused by the current carrying wire.
ii. Based on the coordinate axis given in Figure 1, determine the direction of the force acting on the proton.

