BTU1113 PHYSICS: REVISION 4

Fluid Mechanics

1- The radius of the aorta is $\sim 10 \mathrm{~mm}$ and the blood flowing through it has a speed ~ 300 $\mathrm{mm} . \mathrm{s}^{-1}$. A capillary has a radius $\sim 4 \times 10^{-3} \mathrm{~mm}$ but there are literally billions of them. The average speed of blood through the capillaries is $\sim 5 \times 10-4 \mathrm{~m} . \mathrm{s}^{-1}$.
Calculate the effective cross sectional area of the capillaries and the approximate number of capillaries.

2- Water circulates throughout a house in a hot-water heating system. If the water is pumped at a speed of $0.5 \mathrm{~m} / \mathrm{s}$ through a $4.0-\mathrm{cm}$-diameter pipe in the basement under a pressure of 3.0 atm , what will be the flow speed and pressure in a $2.6-\mathrm{cm}$-diameter pipe on the second floor 5.0 m above? Assume the pipes do not divide into branches.

3- A body of density ρ is dropped from rest from a height h into a lake of density δ, where $\delta>\rho$. Neglecting all dissipative forces, the maximum depth to which the body sinks before returning to float on surface.

4- A wooden cube just floats inside water with a 200 g mass place on it. When the mass is removed, the cube floats with its top surface 2 cm above the water level. What is the side of cube?

5- A block of wood float in water with $\frac{4}{5}$ th of its volume submerged, but it just floats in another liquid. Find the density of liquid in $\mathrm{kg} / \mathrm{m}^{3}$.

