For updated version, please click on http://ocw.ump.edu.my

BTU 1113 Physics

Chapter 4:Static Equilibrium

by Nadzirah Bte Mohd Mokhtar Faculty of Engineering Technology nadzirah@ump.edu.my

Chapter Description

- Aims
 - Illustrate the forces in equilibrium concept.
 - Identify the condition for equilibrium and calculate rigid objects in static equilibrium.
- Expected Outcomes
 - Students should be able to illustrate the forces in equilibrium concept.
 - Students should be able to identify the condition for equilibrium and calculate rigid objects in static equilibrium.
- References
 - Giancoli, D.C., 2008. Physics for Scientists & Engineers. 4th edition. Prentice Hall, USA.
 - Jones, E., 2002. Contemporary College Physics. 3rd Ed, McGraw-Hill, Singapore.
 - Young, H. D. and Freedman, R. A., 2012. University Physics with Modern Physics. 13th edition, Pearson, San Francisco

1st aim: Illustrate the forces in equilibrium concept.

Equilibrium Concept

An object is in "Equilibrium" when:

- 1. There is no net force acting on the object
- 2. There is no net Torque (we'll get to this later)

In other words, the object is **NOT experiencing linear acceleration** or rotational acceleration.

$$a = \frac{\Delta v}{\Delta t} = 0$$
$$\alpha = \frac{\Delta \omega}{\Delta t} = 0$$

Static Equilibrium

An object is in "Static Equilibrium" when it is **NOT MOVING.**

$$v = \frac{\Delta x}{\Delta t} = 0$$
$$a = \frac{\Delta v}{\Delta t} = 0$$

Dynamic Equilibrium

An object is in "Dynamic Equilibrium" when it is **MOVING with constant linear velocity** and/or rotating with constant angular velocity.

$$a = \frac{\Delta v}{\Delta t} = 0$$
$$\alpha = \frac{\Delta \omega}{\Delta t} = 0$$

Λ.,

2nd aim: Identify the condition for equilibrium and calculate rigid objects in static equilibrium.

Equilibrium Conditions

Let's focus on condition 1: net force = 0 $\sum \vec{F} = 0$

The x components of force cancel $\sum \vec{F}_x = 0$

The y components of force cancel

$$\sum \vec{F}_y = 0$$

Condition 1: No net Force

We have already looked at situations where the **net force = zero**. Determine the magnitude of the forces acting on each of the **2 kg** masses <u>at rest</u> below.

Condition 1: No net Force

 $\sum F_x = 0$ and $\sum F_y = 0$

Condition 1: No net Force $\sum F_x = 0$ and $\sum \mathbf{F}_{\mathbf{y}} = \mathbf{0}$ $\sum \mathbf{F}_{\mathbf{y}} = \mathbf{0}$ T1 = 10 NT2 = 10 NT1 + T2 - mg = 0T1 = T2 = T20 N

T + T = mg2T = 20 N T = 10 N

Condition 1: No net Force

Equal angles ==> T1 = T2

 $T_{y} = mg/2 = 10 N$

T = 20 N

Note: unequal angles =

Condition 1: No net Force

 $\sum F_{x} = 0 \quad \text{and} \quad \sum F_{y} = 0$ $30^{\circ} \quad 30^{\circ} \quad T2 = 20 \text{ N}$ mg = 20 N

Note: The y-components cancel, so T1_y and T2_y both equal 10 N

Equilibrium

An object is in "Equilibrium" when:

- 1. There is no net force acting on the object
- 2. There is no net Torque

In other words, the object is **NOT experiencing** linear acceleration or **rotational acceleration**.

$$a = \frac{\Delta v}{\Delta t} = 0$$

What is Torque?

Torque is like "twisting force"

The more torque you apply to a wheel the more quickly its rate of spin changes

Torque = \mathbf{Fr}

Math Review:

1. Definition of angle in "radians"

$$\Delta \theta = s/r$$
$$\Delta \theta = \frac{\text{arc length}}{\text{radius}}$$

- 2. One revolution = $360^\circ = 2\pi$ radians
 - ex: π radians = 180°
 - ex: $\pi/2$ radians = 90°

Torque is like "twisting force"

The more torque you apply to a wheel, the more quickly its rate of spin changes

Torque is like "twisting force"

Imagine a bicycle wheel that can only spin about its axle. If the force is the same in each case, which case produces a more effective "twisting force"?

Torque is like "twisting force"

Imagine a bicycle wheel that can only spin about its axle.

What affects the torque?

- 1. The place where the force is applied: the distance "r"
- 2. The strength of the force
- *3. The angle of the force*

Torque = r . Fsinø

Imagine a bicycle wheel that can only spin about its axle.

What affects the torque?

- 1. The distance from the axis rotation "r" that the force is applied
- 2. The component of force perpendicular to the r-vector

Two different ways of looking at torque

Torque = $(F)(rsin\phi)$

r_{\perp} is called the "moment arm" or "moment"

Condition 2: net torque = 0

Torque that makes a wheel want to rotate clockwise is + Torque that makes a wheel want to rotate counterclockwise is -

Weights are attached to **8 meter** long levers <u>at rest</u>. Determine the unknown <u>weights</u> below

Weights are attached to an 8 meter long lever <u>at rest</u>. Determine the unknown <u>weight</u> below

$$\sum \mathbf{T's} = \mathbf{0}$$

$$T2 - T1 = 0$$

$$T2 = T1$$

$$F_2 r_2 = F_1 r_1$$

$$(F_2)(4) = (20)(4)$$

 $F_2 = 20 N \dots same as F_1$

Weights are attached to an 8 meter long lever <u>at rest</u>. Determine the unknown <u>weight</u> below

$$\sum \mathbf{T's} = \mathbf{0}$$

$$T2 - T1 = 0$$

$$T2 = T1$$

$$F_2 r_2 sin \phi_2 = F_1 r_1 sin \phi_1$$

$$(F_2)(2)(sin 90) = (20)(4)(sin 90)$$

F₂=??

$F_2 = 40 N$

(force at the fulcrum is not shown)

Weights are attached to an 8 meter long lever <u>at rest</u>. Determine the unknown <u>weight</u> below

 $\sum T's = 0$

 $F_2 = 30 N$

$$T2 - T1 = 0$$

$$T2 = T1$$

$$F_2 r_2 \sin \phi_2 = F_1 r_1 \sin \phi_1$$

$$(F_2)(2)(\sin 90) = (20)(3)(\sin 90)$$

(force at the fulcrum is not shown)

Conclusion of The Chapter

Statics is concerned about the calculation of the forces acting on and within structures that are in equilibrium. There are two conditions applied for the object in equilibrium; no net force acting on the object and no net torque.

Reference

Giancoli, D.C., 2008. Physics for Scientists & Engineers. 4th edition. Prentice Hall, USA.

