BTU1113 PHYSICS

1. The system of units used for scientific purposes is the
A) SI system
B) British system
C) European system
D) American system
2. 2 nm means
A) 2 e 9 m
B) $2 \mathrm{e}-6 \mathrm{~m}$
C) $2 \mathrm{e}-9 \mathrm{~m}$
D) 2 e 6 m
3. How many significant digits are there in the significant figure 0.000756
A) 6
B) 3
C) 1
D) 7
4. The sum of the significant figures $56,2.15$, and 0.5643 gives the significant figure
A) 58.7143
B) 58
C) 59
D) 58.7
5. Express 560000 in standard notation
A) 5.6 e 4
B) 56 e 4
C) 5.6 e 5
D) $5.6 \mathrm{e}-5$
6. Convert 3 mm is equal to
A) $3 \mathrm{e}-6 \mathrm{~km}$
B) $3 \mathrm{e}-3 \mathrm{~km}$
C) 3 e 6 km
D) $3 \mathrm{e}-5 \mathrm{~km}$
E) $3 e 5 \mathrm{~km}$
7. Which of the following physical quantities is a scalar?
A) Velocity
B) Force
C) Length
D) Displacement
E) Acceleration
8. The default angle (angle measured with respect to the positive x-axis) for the vector $\mathbf{A}=2 \mathrm{~m}$ north is
A) 90°
B) -90°
C) 0°
D) 270°
E) 180°
9. Determine the x and y components of the vector $\mathbf{A}=10 \mathrm{~m}$ west
A) $(-10 \mathrm{~m}, 10 \mathrm{~m})$
B) $(0 \mathrm{~m}, 10 \mathrm{~m})$
C) $(10 \mathrm{~m}, 0 \mathrm{~m})$
D) $(0 \mathrm{~m},-10 \mathrm{~m})$
E) $(-10 \mathrm{~m}, 0 \mathrm{~m})$
10. Calculate the direction (angle with respect to the positive x axis) of a vector whose x and y components are 16 m and 15 m respectively.
A) 46.848°
B) 65.53°
C) 84.674°
D) 9.919°
E) 43.152°
11. Which of the following statements is incorrect_
A) The x-component of the unit vector \mathbf{k} is zero
B) The y-component of the unit vector j is one
C) The unit vectors \mathbf{i} and \mathbf{j} are perpendicular to each other
D) The magnitude of any unit vector is one
E) The x-component of the unit vector \mathbf{i} is zero
12. The position of a certain particle varies with time according to the equation $x=5.6 t^{2}+3.5 t$ Where is the particle after 5.3 seconds?
A) 165.793 m
B) 179.461 m
C) 175.854 m
D) 169.348 m
E) 161.915 m
13. The position of a certain particle varies with time according to the equation $x=5.6 t^{4}-6.2$

Calculate its velocity after 5.3 seconds
A) $3851.475 \mathrm{~m} / \mathrm{s}$
B) $4997.492 \mathrm{~m} / \mathrm{s}$
C) $567.351 \mathrm{~m} / \mathrm{s}$
D) $3334.845 \mathrm{~m} / \mathrm{s}$
E) $\quad 1219.384 \mathrm{~m} / \mathrm{s}$
14. A particle, starting from a speed of $28 \mathrm{~m} / \mathrm{s}$ was accelerated for 18 seconds with an acceleration of $8 \mathrm{~m} / \mathrm{s}^{\wedge} 2$. How far did it travel?
A) 1324 m
B) 432 m
C) 3096 m
D) 1800 m
E) 360 m
15. An object was released from a height of 80 m . Its velocity just before it hits the ground and the time taken to hit the ground respectively are
A) $-1568 \mathrm{~m} / \mathrm{s}$ and 16.327 s
B) $-28 \mathrm{~m} / \mathrm{s}$ and 2.857 s
C) $-39.598 \mathrm{~m} / \mathrm{s}$ and 4.041 s
D) $-28 \mathrm{~m} / \mathrm{s}$ and 4.041 s
E) $-39.598 \mathrm{~m} / \mathrm{s}$ and 2.857 s

Ans. For Quiz 1

1. A
2. C
3. B
4. C
5. C
6. A
7. C
8. A
9. E
10. E
11. E
12. C
13. D
14. D
15. C
