

WATER AND WASTEWATER MONITORING

PHYSICAL AND CHEMICAL ANALYSES

Risky Ayu Kristanti
Faculty of Engineering Technology
kristanti@ump.edu.my

Chapter Description

Aims

- Student explain the method for analysing physical and chemical characteristics of water sample.
- Student measure the physical and chemical analyses of water sample in the laboratory.

Expected Outcomes

- Student should be able to explain method for analysing physical and chemical characteristics of water sample.
- Student should be able to measure the physical and chemical analyses of water sample in the laboratory.

Other related Information

- Environmental Protection Agency
- Natural Resources Conservation Service

References

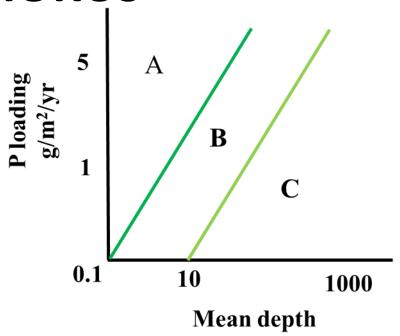
- Burden, Foerstner, McKelvie, and Guenther (2002) Environmental Monitoring Handbook, The McGraw-Hill Companies, Inc.
- Jamie Bartram and Richard Balance. 1996. Water Quality Monitoring: A Practical Guide to Design and Implementation of Freshwater Quality Studies and Monitoring Programmes, CRC Press.

WATER PARAMETER: EX SITU

- Phosphorus
- Nitrogen
- Biochemical oxygen demand
- Chemical oxygen demand
- Total Solids
- Chlorophyll

Malaysia PAHANG

PHOSPHORUS



- Nutrient for plants
- Usually limiting in freshwater
- Slight increase can cause accelerated eutrophication
 - accelerated plant growth
 - algae blooms
 - low dissolve oxygen (hypoxia)
 - fish kills

PHOSPHORUS

 The productivity of lake is often determined by its P loading and its volume (mean depth)

LAKE CLASSIFICATION

- Oligotrophic lakes- deep, nutrient-poor lakes in which the phytoplankton is not very productive.
 - →The water is usually clear
- → Eutrophic lakes-shallow, nutrient-rich lakes with very productive phytoplankton.
 - →The waters are usually murky due to large phytoplankton populations
 - the large amounts of matter being decomposed may result in oxygen depletion.

PHOSPHORUS SOURCES

- Soil and rocks
- Wastewater treatment plants
- Runoff from fertilized lawns and cropland
- Failing septic systems
- Runoff from animal manure storage areas
- Commercial cleaning preparations

NITROGEN

- Nitrate (NO3), ammonia (NH3), nitrite (NO2), organic N
- Nitrate is readily available plant nutrient
- If sufficient P, accelerated eutrophication
- Toxic to warm-blooded animals at higher concentrations (10 mg/L) or higher) under certain conditions
- Ammonium toxicity

NITROGEN SOURCE

- Nitrate (NO3), ammonia (NH3), nitrite (NO2), organic N
- Nitrate is readily available plant nutrient
- If sufficient P, accelerated eutrophication
- Toxic to warm-blooded animals at higher concentrations (10 mg/L) or higher) under certain conditions
- Ammonium toxicity

BIOLOGICAL OXYGEN DEMAND

 The biological oxygen demand (BOD) is the amount of dissolved oxygen needed by aerobic biological organism in a body of water to breakdown organic material present in a given water sample at certain temperature over a specific time period

(Nemerow 1974, Tchbanglous and Schroeder, 1985)

- Affected by temperature, pH, the presence of certain kinds of microorganisms, and the type of organic and inorganic material in water
- Many animal species can grown and reproduce normally when DO level is ~ 5.0 mg/L

HIGH BOD AND LOW BOD

Phosfate present in soap and detergent that enhances the growth of algal blooms. As a result depletion of oxygen occur

High BOD and Low BOD:

- In a body of water with large amount of decaying organic material, the DO level may drop by 90%, this would represent **High BOD**
- In a body of water with small amount of decaying material, the DO level may drop by 10%, this would represent Low BOD

ANALYSIS OF BOD

- Use glass bottles having 60 mL of greater capacity. Take samples of water
- Turn on the constant temperature chamber to allow the controlled temperature to stabilize at 20°C±1°C
- Record the DO level (ppm) of one immediately
- Place water sample in an incubator in complete darkness at 20°C for 5 days. Exclude all light to prevent possibility of photosynthesis production of DO
- Wrap the water sample bottle in aluminum foil or black electrical tape and store in a dark place at room temperature, if don't have an incubator

DILUTION OF SAMPLE

- Most relatively unpolluted streams have a BOD5 that ranges from 1 to 8 mg/L
- Dilution is necessary when the amount of DO consumed by microorganisms is greater than the amount of DO available in the air-saturated.
- If the BOD5 value of a sample is less than 7 mg/L, sample dilution is not needed.
- The DO concentration after 5 days must be at least 1 mg/L and at least 2 mg/L lower in concentration

(American Public Health Association and Others, 1995)

RECOMMENDED SAMPLE VOLUMES

BOD RANGE	Millilitre of Sample	Millilitre of Water
0-7 mg/L	300	0
6-21 mg/L	100	200
12-42 mg/L	50	250
30-105 mg/L	20	280
60-210 mg/L	10	290

Adapted from Sawyer and McCarty, 1978

DETERMINATION OF BOD VALUE

The general equation for the determination of BOD values is

$$BOD_5 = \frac{D1 - D2}{P}$$

Where:

D1 = initial DO of the sample

D2 = final DO of the sample after 5 days and

P = decimal volumetric fraction of sample used

If 100 mL of sample are diluted to 300 mL then P=0.33. notice that if no dilution was necessary, P=1.0 and the BOD5 is determined by D1-D2

INTERPRETATION OF BOD LEVEL

INTERPRETATION OF BOD LEVEL

BOD LEVEL

1-2 mg/L

3-5 mg/L

6-9 mg/L

> 10 mg/L

STATUS

CLEAN WATER

MODERATELY CLEAN

POLLUTED WATER

VERY POOR QUALITY

CHEMICAL OXYGEN DEMAND

- Chemical oxygen demand (COD) is the total amount of oxygen required to chemically oxidize the bio degradable non biodegradable organic matter
- It is expressed in mg/L or ppm, which indicates the mass of oxygen consumed per liter of solution

ANALYSIS OF COD

- Wash 300 mL round bottom refluxing flask
- In refluxing flask put one spatula of HgSO₃ + 10 mL sample + 5 mL K₂Cr₂O₇ +15 mL concentrated H₂SO₄.
- Add small amount of silver sulphate
- Shake well and reflux for 2 hr.
- Cool and add little amount of distilled water to the flask throught the condenser
- Titrate the solution in the flask against Ferrous Ammonium Sulfate (FAS) using ferroin indicator
- End point green color to reddish brown

Note: for the blank, add 10 mL distilled water instead of sample. Rest of procedure is the same

DETERMINATION OF COD VALUE

The COD is determined by the formula:

$$COD = (A-B) \times N \times 8000$$

ml sample taken

Where

A = mL of FAS required for blank

B = mL of FAS requires for sample

N = normality of FAS

ADVANTAGES OF COD TEST

- COD result are available much sooner than BOD test results
- The COD test requires fewer manipulations of the sample
- The COD test oxidizes a wide range of chemical compounds.
- It can be standardize more easily

DISADVANTAGES OF COD

- The major disadvantage is that the results are not directly applicable to 5-d BOD results without correlation studies over a long period of time
- It is inability to differentiate between biologically oxidizable and biologically inert organic matter.

TOTAL SOLIDS

- Total solids are dissolved solids plus suspended and settleable solids in water
- Dissolved solids = calcium, chlorides, nitrate, phosphorus, iron, sulfur, and other ions and particles that will pass through a 2 micron filter
- Suspended solids = silt, clay, plankton, algae, fine organic debris, and other particulate matter that will not pass through a 2-micron filter

DETERMINATION OF TS VALUE

- Total solids are measured by weighing the amount of solids present in a known volume of sample
- Total solids (mg/L) = (TSA- TSB) x 1000
 Sample (mL)

Where

TSA = weight of dried residue + dish in mg

TSB = weight of dish in mg

CHLOROPHYLL

- Chlorophyll- is a green pigment found in most plants, algae, and cyanobacteria.
- Its name is derived from ancient Greek

```
Chloros = green
```


TYPE OF CHLOROPHYLL

- Chlorophyll-a is the molecule found in plant cells and therefore its concentration is what is reported during chlorophyll analysis
- Chlorophyll d is found only in marine red algae
- Chlorophyll b and c are common in fresh water

THE NEED OF CHLOROPHYLL

- With over 70% of the surface of the earth covered in water, phytoplankton and photosynthetic bacteria are responsible for almost ½ of the planets primary production
- Chlorophyll measurements are also used to directly monitor phytoplankton populations
- These extraordinarily efficient plants also act as the single largest CO₂ sink on earth

FIELD TECHNIQUE

- Collection of samples
 gather sample of water using either hose
 sampler or sampling bottle
- Sample Filtration
 Using Glass fiber filter, algae and other suspended will be collected
- Preservation of the samples
 By freeze the sample or immediately
 submerse the filter in the solvent, seal and
 darken

LABORATORY ANALYSIS

- Filter paper is then processed, ground and leached to extract the chlorophyll
- Extraction of chlorophyll by solvent such as acetone or methanol
- Chlorophyll pigments are separated in a simple paper chromatography by a spectrophotometer

Conclusion of The Chapter

 The main Physical and chemical analyses of water characteristics contains six parameters, including phosphorus, nitrogen, biochemical oxygen demand, chemical oxygen demand, total solids and chlorophyll.

Reference

Jamie Bartram and Richard Balance. 1996. Water Quality
Monitoring: A Practical Guide to Design and Implementation of
Freshwater Quality Studies and Monitoring Programmes, CRC
Press.