

WATER AND WASTEWATER MONITORING

Field Work and Sampling

by Risky Ayu Kristanti Faculty of Engineering Technology kristanti@ump.edu.my

Types of Water Quality Monitoring

Grab Sampling:

- Provides a snapshot of water quality at the time the sample was taken

Continuous Sampling:

- Provides a clearer picture of water quality over time

Sample Containers

Silver	250 ml polyethylene (amber)	Rinse three times with tap water, once with chromic acid ² , three times with tap water, once with 1:1 nitric acid and then three times with ultrapure distilled water ⁵ in that order	
Mercury	100 ml glass (Sovirel)	Rinse three times with tap water, once with chromic acid ² , three times with tap water, once with 1:1 nitric acid and then three times with ultrapure distilled water ⁵ in that order	Source: Jamie Bartram and Richard
Acidity, Alkalinity, Arsenic, Calcium, Chloride, Colour, Fluoride, Hardness, Magnesium, Non- filterable residue, pH, Potassium, Sodium, Specific conductance, Sulphate, Turbidity	1,000 ml polyethylene	Rinse three times with tap water, once with chromic acid ² , three times with tap water, once with 1:1 nitric acid and then three times with distilled water in that order	Balance, 1996
Carbon, total organic Nitrogen: ammonia Nitrogen: nitrate, nitrite Nitrogen: total	250 ml polyethylene	Rinse three times with tap water, once with chromic acid ² , three times with tap water, and three times with distilled water, in that order	
Phosphorus, total	50 ml glass (Sovirel)	Rinse three times with tap water, once with chromic acid ² , three times with tap water, and three times with distilled water, in that order	Communitising Technology

Silver	250 ml polyethylene (amber)	Rinse three times with tap water, once with chromic acid ² , three times with tap water, once with 1:1 nitric acid and then three times with ultrapure distilled water ⁵ in that order	Universiti Malaysia PAHANG Egreery - Teering
Mercury	100 ml glass (Sovirel)	Rinse three times with tap water, once with chromic acid ² , three times with tap water, once with 1:1 nitric acid and then three times with ultrapure distilled water ⁵ in that order	
Acidity, Alkalinity, Arsenic, Calcium, Chloride, Colour, Fluoride, Hardness, Magnesium, Non- filterable residue, pH, Potassium, Sodium, Specific conductance, Sulphate, Turbidity	1,000 ml polyethylene	Rinse three times with tap water, once with chromic acid ² , three times with tap water, once with 1:1 nitric acid and then three times with distilled water in that order	Source: Jamie Bartram and Richard Balance, 1996
Carbon, total organic Nitrogen: ammonia Nitrogen: nitrate, nitrite Nitrogen: total	250 ml polyethylene	Rinse three times with tap water, once with chromic acid ² , three times with tap water, and three times with distilled water, in that order	
Phosphorus, total	50 ml glass (Sovirel)	Rinse three times with tap water, once with chromic acid ² , three times with tap water,	

and three times with distilled water, in that order

Type of samples

• Sampling surface waters and groundwaters

Sampling surface waters

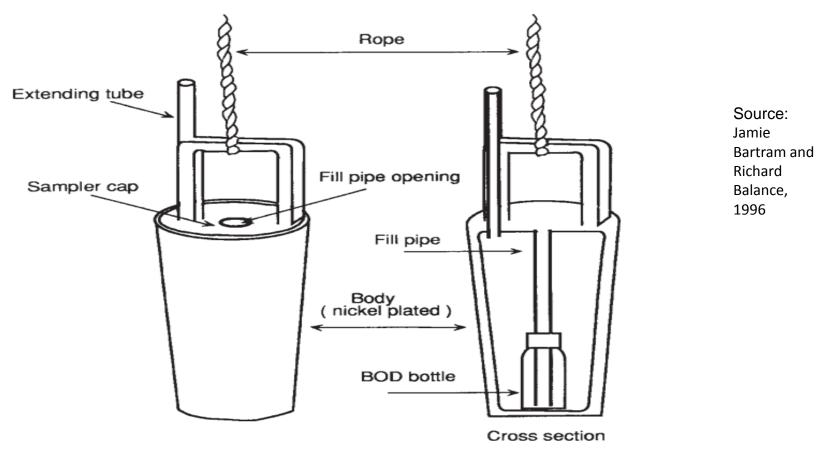
- The simplest, a "grab" sample, is taken at a selected location, depth and time.
- ✓ if the sampler is small and many analyses are to be done, two grab samples will be taken at the station and will be mixed in the same transport container

Composite sample

- <u>Depth-integrated</u>: most commonly made up of two or more equal parts collected at predetermined depth intervals between the surface and the bottom.
- <u>Area-integrated</u>: made by combining a series of samples taken at various sampling points spatially distributed in the water body.
- <u>Time-integrated</u>: made by mixing equal volumes of water collected at a sampling station at regular time intervals
- <u>Discharge-integrated</u>: It is first necessary to collect samples and to measure the rate of discharge at regular intervals over the period of interest.

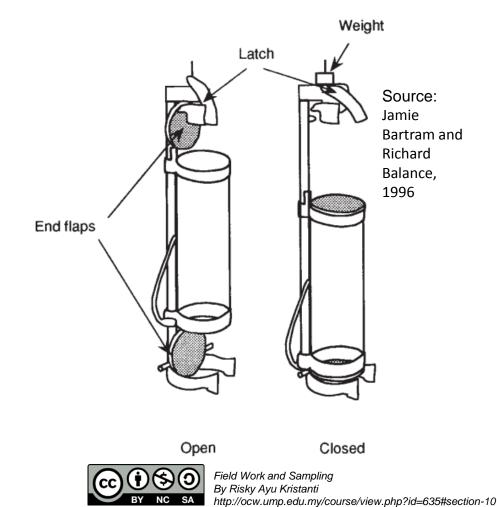
Sampling Groundwater

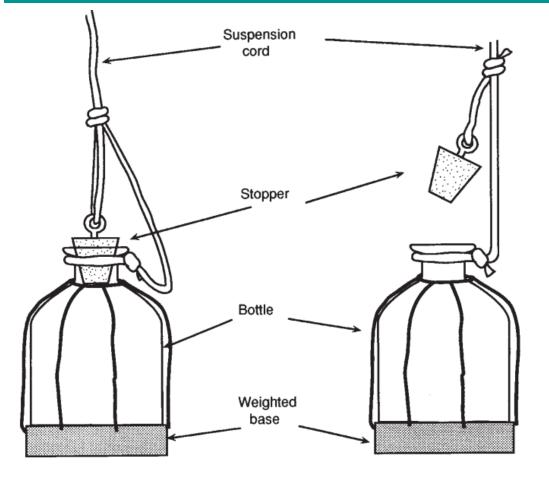
- Obtain from existing drilled wells, dug (shallow) wells or springs.
- The water should be allowed to flow into the bottle for sufficient time to displace the contents of the bottle at least three times.
- The sampling container must not be allowed to touch the bottom of the well or spring catchment



Water Sampler

- Dissolved oxygen sampler
- Depth sampler
- Multipurpose sampler

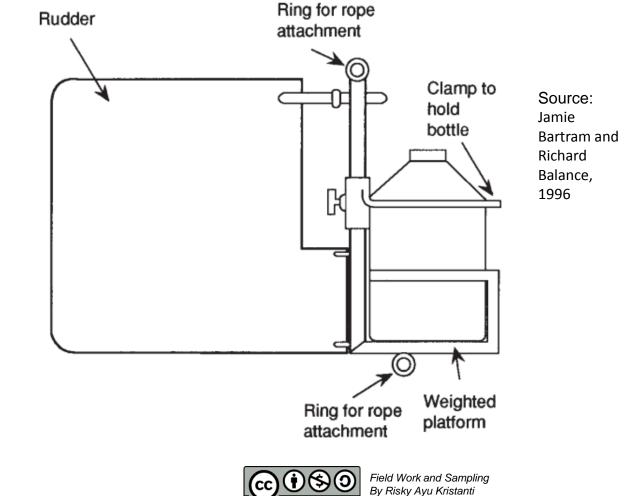

Dissolved oxygen sampler



Depth sampler

- Called as "Grab sample"
- Can retrieve a sample from any predetermined depth
- Used for all chemical analyses except dissolved oxygen

Depth sampler suitable for moderate depths



Source: Jamie Bartram and Richard Balance, 1996

Multipurpose sampler

 Used for taking samples in flowing streams or rivers.

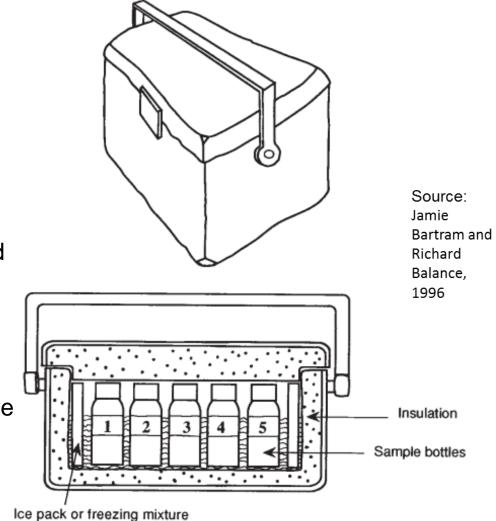
http://ocw.ump.edu.my/course/view.php?id=635#section-10

Sample preservation

- In general, sample bottles should be <u>resealed</u> and <u>stored</u> in a clean, cool, dark environment and protected from recontamination.
- Additional methods of preservation include freezing, solvent extraction and the addition of chemical preservatives.

Preservatives and Permissible Storage

Variable	Recommended container ¹	Preservative	Max. permissible storage time	4	
Alkalinity	Polyethylene	Cool 4 °C	24 h		
Aluminium	Polyethylene	2 ml Conc. HNO ₃ I ⁻¹ sample	6 months		
Arsenic	Polyethylene	Cool 4 °C	6 months		
BOD	Polyethylene	Cool 4 °C	4 h		
Boron	Polyethylene	Cool 4 °C	6 months		
Cadmium	Polyethylene	2 ml Conc. HNO ₃ I ⁻¹ sample	6 months		Source:
Calcium	Polyethylene	Cool 4 °C	7 days		Jamie
Carbamate pesticides Carbon	Glass	H₂SO₄ to pH < 4, 10g Na₂SO₄ I ^{−1}	Extract immediately		Bartram and Richard
inorganic/organic	Polyethylene	Cool 4 °C	24 h		Balance,
particulate	Plastic Petri dish	Filter using GF/C filter; Cool, 4 °C	6 months		1996
Chloride	Polyethylene	Cool 4 °C	7 days		
Chlorinated					
hydrocarbon	Glass	Cool 4 °C	Extract immediately		
Chlorophyll	Plastic Petri dish	Filter on GF/C filter; freeze -20 °C	7 days		
Chromium	Polyethylene	2 ml Conc. HNO ₃ I ⁻¹ sample	6 months		
COD	Polyethylene	Cool 4 °C	24 h		
Copper	Polyethylene	2 ml Conc. HNO ₃ I ⁻¹ sample	6 months		
Dissolved oxygen					
(Winkler)	Glass	Fix on site	6 h		
Fluoride	Polyethylene	Cool 4 °C	7 days		
Iron	Polyethylene	2 ml Conc. HNO ₃ I ⁻¹ sample	6 months		
Lead	Polyethylene	2 ml Conc. HNO ₃ I ⁻¹ sample	6 months		
Magnesium	Polyethylene	Cool 4 °C	7 days		
Manganese	Polyethylene	2 ml Conc. HNO ₃ I ⁻¹ sample	6 months		
Mercury	Glass or teflon	1 ml Conc. H2SO4 + 1 ml 5% K2Cr2O7	1 month		


Nickel Nitrogen	Polyethylene	2 ml Conc. HNO ₃ I ⁻¹ sample	6 months	
Ammonia Kjeldahl	Polyethylene Polyethylene	Cool 4 °C, 2 ml 40% H ₂ SO ₄ I ⁻¹ Cool 4 °C	24 h	
Nitrate + Nitrite	Polyethylene	Cool 4 °C	24 h	
Organic nitrogen	Polyethylene	Cool 4 °C	24 h 24 h	
-	es Plastic Petri dish	Filter using GF/C filter, Cool 4 °C	6 months	
Organophosphoru			No holding, extract-	
pesticides	Glass	Cool, 4 °C, 10% HCI to pH 4.4	ion on site	
Pentachloropheno		H_2SO_4 to pH < 4, 0.5 g CuSO ₄ I ⁻¹	24 h	
		sample; Cool 4 °C	2411	
pН	Polyethylene	None	6 h	
Phenolics	Glass	H₃PO₄ to pH < 4, 1.0 g CuSO₄ I ^{−1} sample; Cool 4 °C	24 h	
Phenoxy acid				
herbicides	Glass	Cool 4 °C	Extract immediately	Source:
Phosphorus			•	Jamie
Dissolved	Glass	Filter on site using 0.45 µm filter	24 h	Bartram and
Inorganic	Glass	Cool 4 °C	24 h	Richard
Total	Glass	Cool 4 °C	1 month	Balance, 1996
Potassium	Polyethylene	Cool, 4 °C	7 days	1990
Residue	Polyethylene	Cool, 4 °C	7 days	
Selenium	Polyethylene	1.5 ml Conc. HNO ₃ I ⁻¹ sample	6 months	
Silica	Polyethylene	Cool, 4 °C	7 days	
Sodium	Polyethylene	Cool, 4 °C	7 days	
Electrical			A (1)	
conductivity	Polyethylene	Cool, 4 °C	24 h	
Sulphate	Polyethylene	Cool, 4 °C	7 days	
Zinc	Polyethylene	2 ml Conc. HNO ₃ l ^{−1} sample	6 months	

Transportation and storage of samples

Sample's container information

- Name of the study
- Sample station identification and/or number
- Sampling depth
- Date and time of sampling
- Name of the individual who collected the sample
- Brief details of weather and any unusual conditions prevailing at the time of sampling
- Record of any stabilising preservative treatment
- Results of any measurements completed in the field

Safety during field work

Field staff will encounter wide range of hazards in their work, includes:

- Highly contaminated water, e.g. sewage or chemicals
- Access to sampling stations involve crossing dangerous terrain
- Wading in streams carries the possibility of slipping and personal injury

Suitable protecting clothing, e.g., rubber gloves, water safety and first-aid

Conclusion of The Chapter

Field work had wide range of hazards includes, highly contaminated water, dangerous sampling location, and high possibility of slipping and personal injury, therefore designing a good monitoring programme is required

Reference

Jamie Bartram and Richard Balance. 1996. Water Quality Monitoring: A Practical Guide to Design and Implementation of Freshwater Quality Studies and Monitoring Programmes, CRC Press.

