

3.2 : DETERMINATION OF CRITICAL DEPTH BY VARIOUS METHODS

Three methods available

- 1. Algebraic/Trial and Error Method
- 2. Graphical Method
- 3. Design Chart

Chapter 3: Non - Uniform Flow in Open Channel by N Adilah A A Ghani

Communitising Technology

EXAMPLE 3.4:

- a) A wide and straight river was flows with 3.5m³/s/m flow rate. What is the value of critical depth? If normal depth is 4.6m, calculate the Froude number for this flow rate. (Type of flow: sub critical or supercritical). Calculate the critical slope if Manning's Coefficient is 0.035.
- b) Refer to question (a), calculate the depth (y₂) for the same specific energy. What is Froude number for this condition?
 - *For (b), there are 2 solutions; trial and error and graphical method

Chapter 3: Non - Uniform Flow in Open Channel by N Adilah A A Ghani

Communitising Technology

Universiti Malaysia PAHANG

Solution Example 3.4 (a):

 $q = 3.5 \text{m}^3/\text{s/m}$ $y_c = {}^3V(q^2/g)$ $= {}^3V[(3.5^2)/9.81]$ = 1.08 m (answer)

At normal depth, y = 4.6m,

Chapter 3: Non - Uniform Flow in Open Channel by N Adilah A A Ghani

Flow Velocity, v = q/y = 3.5/4.6 = 0.76m/s

Froude Number at y = 4.6, Fr = v/V(gy)= 0.76/V(9.81)(4.6)

= **0.113** (answer)

Note: Fr < 1.0, therefore , flow in this river is subcritical flow

Universiti

From Manning Formula:

 $Q = AR^{(2/3)}VS / n$

Note:-

for a rectangular channel, q= Q/b; for a very wide channel, R = y Therefore;

 $q = y^{(5/3)}S^{(1/2)}/n$

At critical flow in Non-Uniform flow;-

 $q = yc^{(5/3)}Sc^{(1/2)}/n$ $Sc = (q_n/yc^{(5/3)})^2$

 $= [3.5 \times 0.035 / (1.08)^{(5/3)}]^{2}$

= 0.012 or 1/86 (answer)

Chapter 3: Non - Uniform Flow in Open Channel by N Adilah A A Ghani

Communitising Technology

Solution Example 3.4 (b):

Specific Energy for $y_1 = 4.6$

E = $4.6 + (3.5)^2/19.62 (4.6)^2 = 4.63m$

but

 $E = y_2 + q^2/(2gy_2^2)$

Where as y_2 = depth at the same specific energy

THERE ARE 2 METHODS:-

Trial & Error Method

 y_2 should be in supercritical flow, therefore, the value of y_2 is smaller than y_c .

If $y_2 >>>> ; E <<<<$

Graphical Method

Graph 'y' vs 'E = y+ $(3.5)^2/19.62$ (y)²' E = y + $0.624/y^2$

> y = 0-5 metery = 0.383 m

Chapter 3: Non - Uniform Flow in Open Channel by N Adilah A A Ghani

EXAMPLE 3.5:

A rectangular channel with 3m width flows water at $12\text{m}^3/\text{s}$ flow rate when Froude number is 0.8. Determine the depths (y_1 and y_2) for the same flow rate and specific energy.

Chapter 3: Non - Uniform Flow in Open Channel by N Adilah A A Ghani

Communitising Technology

Solution Example 3.5:

Q 12m³/s ٧ Q/A 12/3y₁

 $4/y_1$

If

0.8 (subcritical flow)

 $v/V(gy_1)$ 0.8 (4/y₁)/V(9.81y₁) 0.8

1.366m (depth for subcritical flow, y1)

Specific Energy;-

E1 y1 + q²/2gy1²

 $1.366 + (4)^2/2(9.81)(1.366)^2$

1.803m

Chapter 3: Non - Uniform Flow in Open Channel by N Adilah A A Ghani

Solution Example 3.5:

Calculation for y₂ at the same flow rate and specific energy

= $y_2 + q^2/2gy_2^2$ $= y_2 + 0.815/y_2^2$

 $(q^2/g)^{(1/3)}$ Critical depth, yc =

1.803

 $(4^2/9.81)^{(1/3)}$

1.177m (as a reference for trial & error method)

Algebraic /Trial & Error Method:-

Y 2	E = 1.803
1	1.82
1.01	1.81
1.02	1.8

(depth at supercritical flow) y2 = 1.02 m

Chapter 3: Non - Uniform Flow in Open Channel by N Adilah A A Ghani

