

Advanced Manufacturing Processes (AMPs)

Electrical Discharge Machining (EDM)

by Dr. Sunil Pathak Faculty of Engineering Technology sunilpathak@ump.edu.my

Chapter Description

Aims

- To provide and insight on Electrical Discharge Machining Process
- To provide details on fundamental and advances in EDM Process
- Advantages and Limitations of EDM is also Presented
- Expected Outcomes
 - Learner will be able to know about the Fundamentals of EDM
 - Learner will be able to identify role of EDM in todays sceneries
- Other related Information
 - Student must have some basic idea of conventional manufacturing and machining
 - Student must have some fundamentals on materials

References

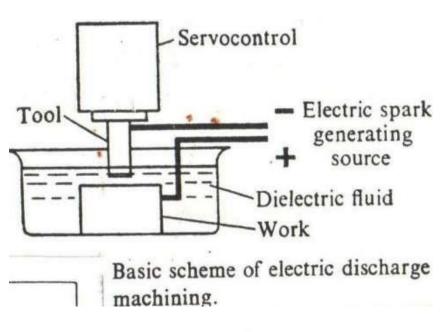
-
-
-

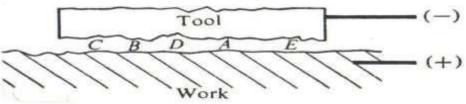
Electro Discharge Machining (EDM)

PROCESS HISTORY

- EDM is a precision material removal process using an accurately controlled electrical discharge (spark) to erode an electrically conductive material.
- * Metal Erosion by Spark Discharges was *First* Observed by Sir Joseph Priestley in 1768
- * Spark Discharges were Used Increasingly for Disintegration of Various Materials to Remove Broken Taps, Drills, and Reamers and to Produce Colloidal Solution.
- 1700 EDM phenomenon was first noticed and conceptualized
- 1881 Meritens used arcs for welding
- 1948 Two Russians B.R. and N.I. Lazarenko first applied the principle to a machine for material removal
- **1970** Start of big growth in use of EDM. Annual growth was about 30 %.

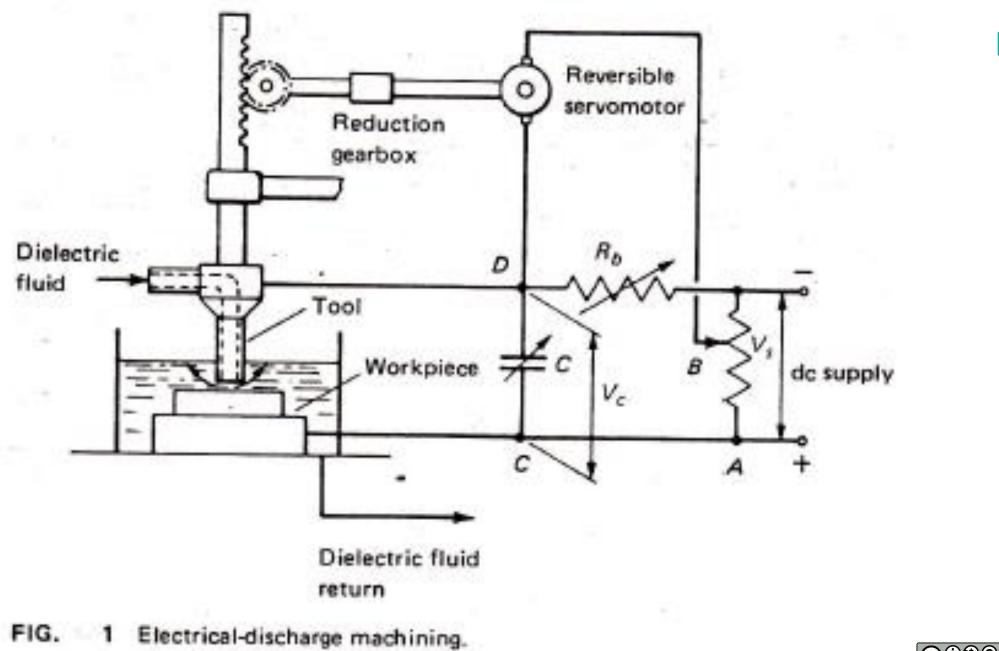
Background


- > When two electrodes are subjected to electrical sparking (discharging), the electrode will experience erosion/wear
- ➢ If two electrodes are of same material, greater erosion occurs on positive electrode.
- > In a spark plug, for example, the erosion needs to be minimized.
- ➢ In machining, researchers seek to maximize material removal rate (MRR)
- For maximum MRR with minimum tool wear, **work** is made **positive**, **tool** is made **negative**.

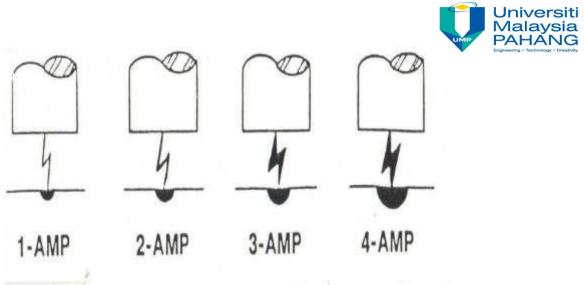


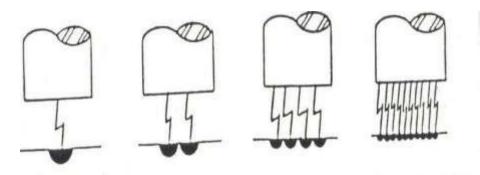
Process Principle

- A thermal energy based process in which an electrically Conducting Material is Removed by Controlled Erosion Through a Series of Sparks
- Tool (negatively charged electrode) and workpiece (positively charged) are immersed in a bath of **dielectric** fluid (depth of 50 mm over work surface is maintained to eliminate fire risk).
- Dielectric fluid is circulated under pressure through a pump, usually through hole/s in tool.
- Spark gap of about 0.025 to 0.05 mm (0.0125 to 0.125 mm) is maintained by servomotor.
- The tool is mounted on chuck attached to machine spindle. The spindle vertical feed is controlled by servomotor through a reduction gearbox.
- Tool and workpiece are connected to a DC relaxation circuit fed either from a DC generator or rectifier.



Details of electrode surface characteristics.

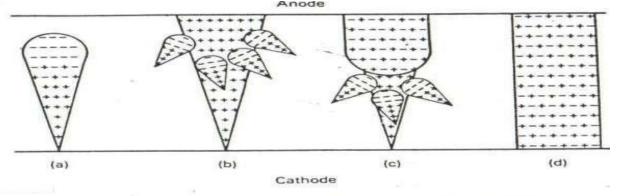



Universiti Malaysia PAHANG

SUMMARY of EDM CHARACTERISTICS

Parameter	Details				
Dielectric	Hydrocarbon (Petroleum) Oils				
	Kerosene				
	Deionized Water				
Dielectric Flow	711 mm Vacuum to 480 kPa				
Pressure					
Tool Materials	Cu, Brass, Cu-W Alloy; Ag-W Alloy;				
	Graphite				
Work Materials	All Electrically Conducting Materials				
Tool-Workpiece	10 – 125 μm				
Or Spark Gap					
Spark Frequency	0.05 – 500 kHz				
Voltage	40 – 400 V DC				
Current	0.5 – 400 A				
Maximum MRR	5 x 10 ³ mm ³ /min				
Specific Power	1.8 W/mm ³ /min				
Consumption					
MRR/TWR	0.1 to 10				
Critical	Voltage,				
Parameters	Capacitance,				
	Spark Gap,				
	Dielectric Circulation,				
	Melting Temperature				

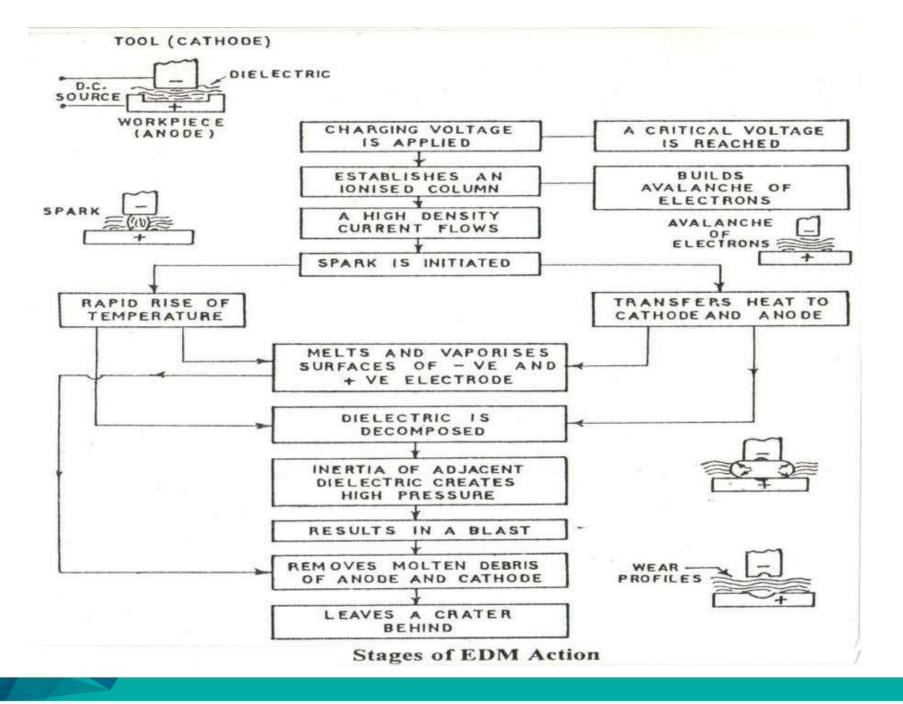
Effect of current on EDM process (Source: courtesy, Hansvedt EDM Division, Urbana, Ill).



Effect of spark frequency on surface finish (Source: courtesy, Hansvedt EDM Division, Urbana, Ill.)

MECHANISM of MATERIAL REMOVAL in EDM

- > When a Suitable Voltage is Built up Across the Tool and Workpiece, an Electrostatic Field of
- > Sufficient Strength is Established \rightarrow Cold Emission of Electrons from the Cathode
- Electrons Accelerate Towards the Anode (Workpiece)
- > After Gaining Sufficient Velocity, Electrons Collide with the Molecules of the Dielectric Fluid
- Breaking them into Electrons and Positive lons
- ➤ A Narrow Column of Ionized Dielectric Fluid Molecules is Established at the CLOSEST Spot between Anode and Cathode → Causes an Avalanche of Electrons which is Normally Seen as a Spark, since Conductivity of the Ionized Column is Very Large
- > As Result of Spark, a Compression Shock Wave is Generated and Very High Temperature
- (10,000 12,000 °C) is Developed on the Electrodes
- Very High Temperature Causes Melting and Vaporization of the Electrode Materials
- > Molten Material is Evacuated by a Mechanical Blast Causing Craters on the Both Electrodes



Mechanism of sparking in EDM. (After Meek and Craggs, 1953.)

- (a) Avalanche of electrons.
- (b) Positively ionized gas in gap.
- (c) Secondary avalanches.
 (d) Streamer development.

EDM Process By Dr. Sunil Pathak

when power is applied:

- ✓ condenser voltage Vc increases exponentially to supply voltage, Vs
- ✓ gap behaves as an open circuit
- ✓ no current flows
- \checkmark dielectric fluid acts as insulator
- ✓ Vc builds and reaches gap breakdown voltage, Vg (determined by gap width and dielectric fluid)

at gap breakdown voltage, Vg:

- $\checkmark~$ a spark is produced across the gap
- \checkmark dielectric fluid deionizes
- $\checkmark\,$ dielectric fluid acts as conductor
- ✓ current flows
- ✓ condenser is discharged.

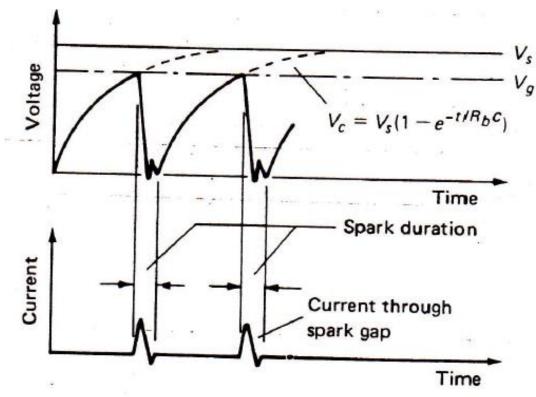
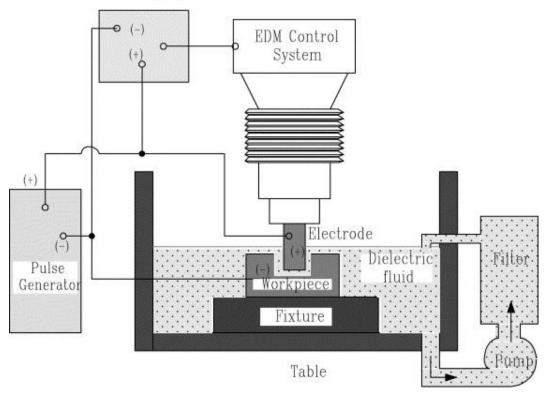


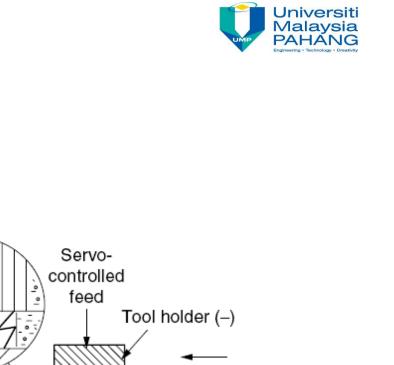
FIG. 2 Voltage and current in electrical-discharge machining.

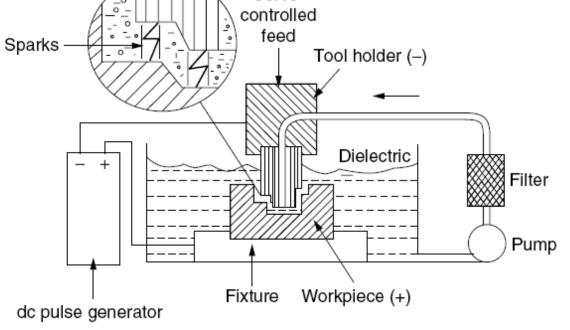
PRINCIPLE (cont)

- > The spark generates very high **localised temperature** (\approx 12,000 °C).
- The spark energy causes particles of workpiece to melt and vapourise to form small pocket (crater) in workpiece.
- > This cycle repeats thousands of time per second (interval between sparks \approx 100 μ s).
- Since sparks always occur between points on tool and workpiece that are closest together, high spots on work are gradually eroded, and tool form is reproduced on the work.
- These particles immediately resolidify into small spheres and are flushed away by the dielectric fluid. Some may form re-cast layer.
- > As metal is eroded, tool is fed in by **servo controlled feed** mechanism.

Sinker EDM [Sodick]




Small hole EDM [Sodick] - A high speed small hole driller that machines difficult to cut carbide and heat treated workpieces. Sodick's patented Vitol machining fluid allows EDMing at much faster speeds than small hole machines that


use water as a dielectric fluid CON Process By Dr. Sunil Pathak EDM Process By Dr. Sunil Pathak

Servo Motor

EDM Process By Dr. Sunil Pathak Communitising Technology

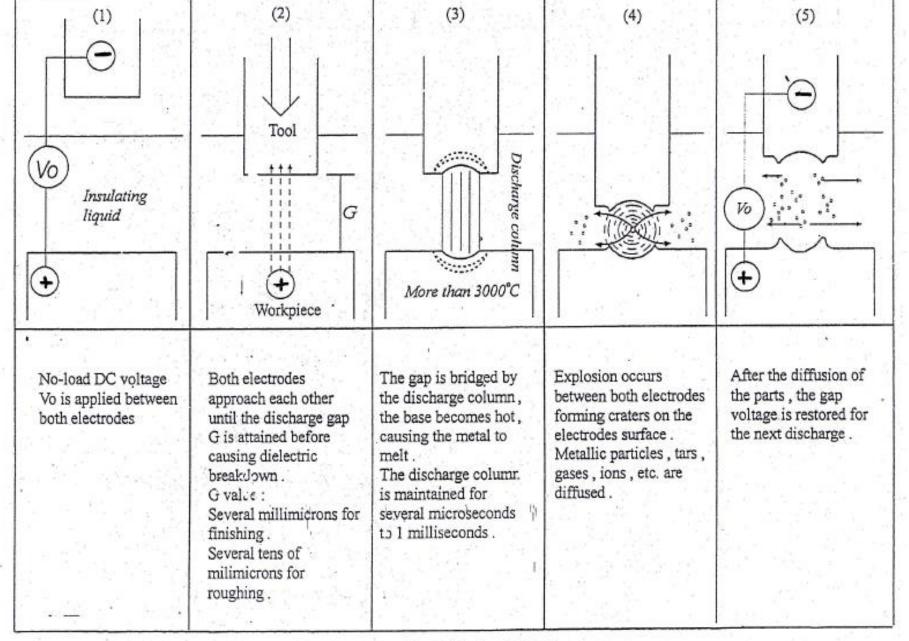
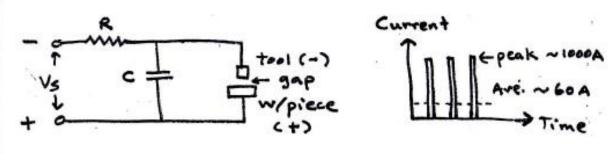


Figure 1: Transition Of Discharge In EDM

Performance Characteristics of EDM



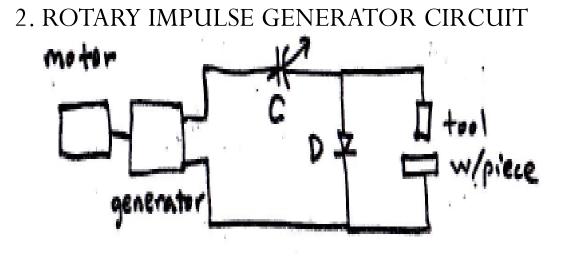
Comparative Study with other processes

CIRCUITS for electrical discharge machine (cotd)

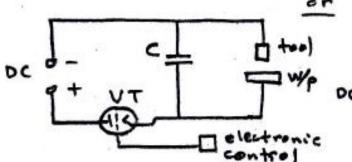
Process	Capital investment	Tooling	Power required	Efficiency	Tool consumption
USM	Low	Low	Low	High	Med.
AJM	V. Low	Low	Low	High	Low
ECM	V. High	Med.	Med.	Low	V. Low
CHM	Med.	Low	Low	Med.	V. Low
EDM	Med.	High	Low	High	High
EBM	High	Low	Low	V. High	V. Low
LBM	Med.	Low	V. Low	V. High	V. Low
PAM	V. Low	Low	V. Low	V. Low	Low
Milling	Low	Low	Low	V. Low	Low

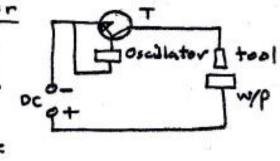
1. ROTARY IMPULSE GENERATOR CIRCUIT

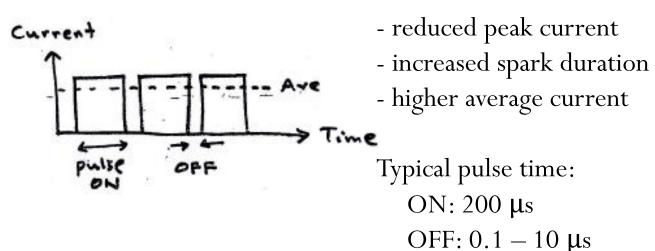
Tool and workpiece immersed in dielectric, connected to capacitor, charged from DC voltage.


- Simplest circuit, cheap
- Low overall efficiency, low MRR
- High tool wear
- Fine finish only obtainable at the expense of MRR

Maximum MRR: $3 \text{ cm}^3/\text{hr}$ (for low power machine) $60 \text{ cm}^3/\text{hr}$ (for high power machine)


CIRCUITS for electrical discharge machine

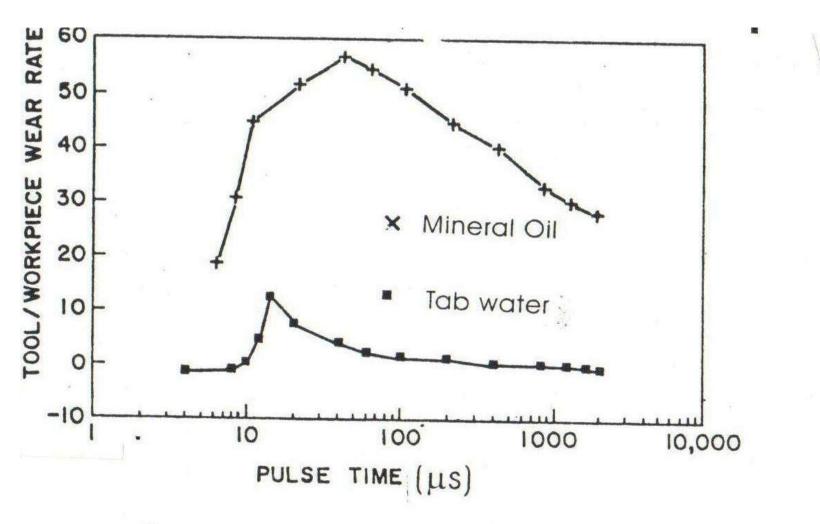




- First half cycle: capacitor is charged through diode. Second half: V $_{generator}$ + V $_{capacitor}$ is applied through gap
- High MRR
- Does not produce good finish

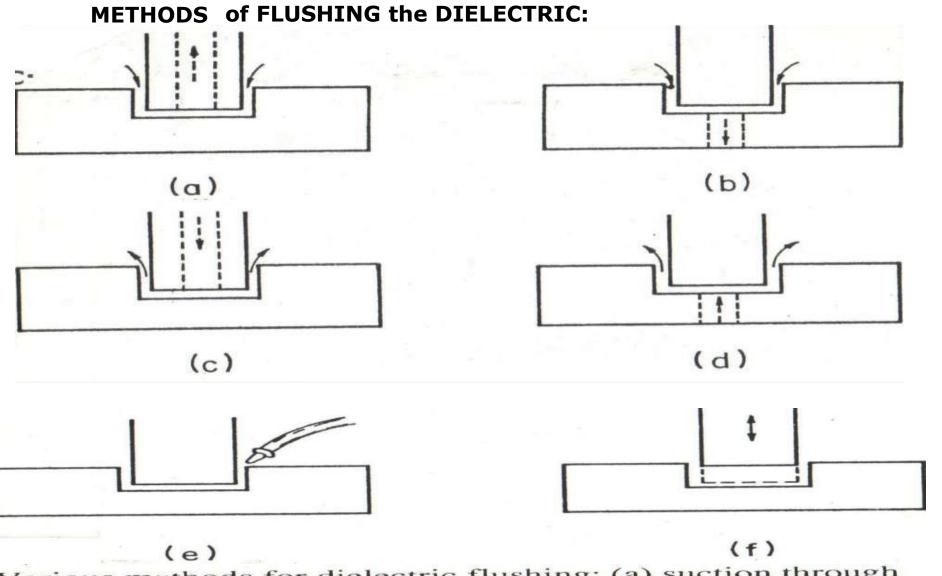
3. CONTROLLED PULSED CIRCUIT

[DIELECTRIC SYSTEM: Consists of Dielectric Fluid, Delivery Devices, Pumps, and Filters DIELECTRIC FLUID:


Role of the Dielectric	Desirable Characteristics	
To <i>Remain Electrically Non-Conducting</i> Or to Act as <i>Insulator</i> between the Tool and Workpiece Until the Breakdown Voltage is Reached	High Dielectric Strength	
To Act as <i>Flushing Medium</i> to Remove Material by- Products from the Tool-Workpiece Gap	Low Viscosity	
To Act as <i>Coolant</i> to Remove the Heat from	High Thermal Conductivity	
To Provide High Sparking Frequency	Should Deionize Rapidly After the Discharge	
Should Not React with the Machine Elements	Chemical Neutrality	
Absence of Toxic Vapors	Non-Toxic	
Should Not Cause Fire Hazards i.e. Should Not Contain Oxygen for Liberation during the Process	Absence of Inflaming Tendency	
Economically Suitable	Low Cost	

Most Commonly Used Dielectric:

- Hydrocarbon Oils such as Paraffin or Light Transformer Oils
- ✤ Kerosene
- Silicon-Based Oils
- De-ionized Water
- Distilled Water



Comparison of EDM performance while using water and mineral as dielectric. Dielectric pressure = 70 psi (tap water); = 50 psi (mineral oil); Tool polarity -ve (tap water) and +ve (mineral oil) [Godinho and Noble]

Various methods for dielectric flushing: (a) suction through electrode, (b) suction through workpiece, (c) pressure through electrode, (d) pressure through workpiece, (e) jet flushing, (f) periodic cycling of electrode [*HMT*, *Bangalore*, *Catalogue*].

SERVO SYSTEM:

□ PRIMARY FUNCTION:□ To Control the Infeed of the Electrode or Workpiece to Precisely Match the Rate of Material Removal

Tough-off Sensing:

Breakthrough Sensing:

Electrode Refeed: Used to Compensate for Reduced Tool Length due to Wear

Moving the Wire Electrode Out to a Fixed Reference Point or Starting Position After Drilling Each Hole

Commanded by the Gap Voltage Sensor System in the Power Supply

Type of Dielectric Flushing Technique has a Direct Effect on the Function of the Servo-System

□ If the Flushing Technique is Not Efficient in Removing
 Workpiece Gap, then Servo-mechanism may have to
 Allowing the Clearance of the Gap □ Longer Cycles

the Products of Machining from the Tool-Spend More Time in Reversing and

TOOL ELECTRODE:

Desirable Characteristics

- High Electrical Conductivity
- Thermal Conductivity
- High Melting Temperature
- Easier Manufacturability
- > Cheapness

Commonly Used Tool Materials

- > Metallic Electrodes
 - ♦ COPPER:→
 - ♦ BRASS:→
 - ♦ COPPER-TUNGSTEN:→
 - ♦ COPPER-BORON: →
 - ♦ CHROMIUM COPPER or TELLURIUM COPPER: →
 - ALUMINIUM:→
 - ♦ ALUMINIUM ALLOY (SILUMIN): →
 - SILVER TUNGSTEN:→
 - STEEL:→

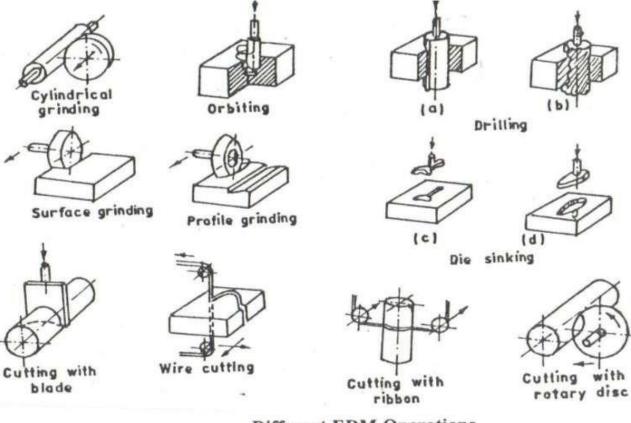
Selection of Tool Material Depends on

- > MRR
- > Wear Ratio (MRR/TWR)
- Ease of Shaping the Electrode
- Cost

[Commonly Used Tool Materials

- Non-Metallic
 - ♦ GRAPHITE:→
- Combined Metallic and Non-Metallic
 - ♦ COPPER-GRAPHITE:→
- Metallic Coating on Insulators
 - ♦ COPPER-on-CERAMIC:→
 - ♦ COPPER On MOLDED PLASTIC: →

APPLICATIONS of EDM SHAPE APPLICATIONS


- > 2D-Profiling
- > 3D-Contouring (Die Making of Complicated **Profile**)
- > Stamping of Tool Dies
- > Making Blind Complex Cavities
- Drilling of Various Hole Shapes
- > Drilling of Micro-Holes for Nozzles & Aerofoil Blade
- > Drilling Inclined of Holes as Shallow as **20**⁰
- > Through Cutting of **Non-Circular Holes**
- > Cutting Narrow of Slots

MATERIAL APPLICATIONS

> All Electrically Conducting Metals and Alloys

- > Supper Alloys
- Tungsten Carbide and Hard Carbides
- > Refractories

Different EDM Operations

SUMMARY of PROCESS CAPABILITIES and OPERATIONAL CHARACTERISTICS of EDM PROCESS

Туре	Capability/Characteristics		Common Value/Range (Attainable)	Universiti Malaysia PAHANG
Finishing Capabilities	Surface Roughness [CLA in µm]		0.8 – 12.5 (0.2)	Engineering - Technology - Creativity
Capabilities	Dimensional Tolerance or Accuracy [± µm]		12.5 – 125 (2.5)	
	Minimum Corner Radii (mm)		0.4 mm (0.025 mm)	
	Minimum Overcut (mm)		0.01 – 0.5 mm	
	Minimum Surface Damage (µm)	Chemical Damage	No	
		Mechanical Damage	25.0 (μm)	
		Thermal Damage	25.0 – 250.0 (μm)	
Drilling Capabilities	Hole Diameter (mm)		0.127 – 6.35 (0.1)	
	Aspect Ratio		10 - 30 (100)	
	Hole Depth (mm)		3.175 - 50 mm (63.5 mm)	
	Minimum Taper (µm /mm)		0.5 - 5.0	
	Maximum No. of Holes that can be Drilled Simultaneously		200	
	Minimum Angle of Inclination Hole Axis with Surface		20°	
Cutting Capabilities	Width of Cut (mm)		0.1 (0.05) mm	
	Thickness of Cut (mm)		3.175 - 50 mm (63.5 mm)	
	Range of Cutting Rate (mm/min)		12.5 (Depends on Material Thickness)
Economic Aspects	Initial Investment or Capital Cost		Medium	
	Tooling and Fixtures Cost		High	
	Power Consumption Cost		Very Low	
	Tool Consumption Cost		High Tool Wear	
Environmental Aspects	Safety		Normal Problem	
	Toxicity		Normal Problem	
	Contamination of Machining Medium		Normal Problem	EDM Process By Dr. Sunil Pathak

ADVANTAGES

- Hardness of workpiece has no effect on process. Rather than machine a part before heat treatment, Universiting done after heat treatment, eliminating risk of distortion
- No physical contact between tool and workpiece, hence no cutting forces. Fragile workpieces can be machined
- **Complex** shapes in dies and moulds can be produced. Making a male electrode is far easier than the complementary female form
- MRR is comparable to conventional machining processes
- With absence of cutting forces, high **aspect ratio** can be machined
- Though material removed by heat produced by spark, **thermal damage** can be controlled to a minimum
- EDM process is highly **automated**, requires little operator skills
- EDM surface consists of small craters which help retention of lubricants

DISADVANTAGES

- Electrode wear rate considerably high, may be necessary to use more than one electrode
- □ Workpiece should be electrically **conductive**
- **Q** Requires higher **energy** than conventional processes
- Causes Thermal Damage as it Produces Recast Layer and Heat Affected Zone (HAZ)
- **Complex Electrode Shapes** Can **Take Long Fabrication Time**
- □ Lacks Flexibility for Quick Changes in Hole Shapes

Dr Sunil Pathak, PhD - IIT Indore (MP) India Senior Lecturer Faculty of Engineering Technology University Malaysia Pahang, Kuantan Malaysia <u>https://www.researchgate.net/profile/Sunil_Pathak4</u> <u>https://scholar.google.co.in/citations?user=9i_j3sMAAAAJ&hl=en</u>

