

Advanced Manufacturing Processes (AMPs)

Introduction to AMPs

by Dr. Sunil Pathak Faculty of Engineering Technology sunilpathak@ump.edu.my

Chapter Description

Aims

- To provide and insight on advanced manufacturing processes
- To provide details on why we need AMP and its characteristics
- Expected Outcomes
 - Learner will be able to know about AMPs
 - Learner will be able to identify role of AMPs in todays sceneries

Other related Information

- Student must have some basic idea of conventional manufacturing and machining
- Student must have some fundamentals on materials
- References
 - Prof N K Jain (IIT Indore, Lecture Notes)
 - Prof. V K Jain (IIT Kanpur, Lecture Notes)

Need of Advanced Manufacturing/Machining Processes

• Limitations of conventional machining methods (workpiece hardness, surface roughness, 3-d parts and complex geometries)

Increased Workpiece Hardness

Decreased Economic Cutting Speed

Lower Productivity

- Rapid Improvements In The Properties Of Materials (Workpiece Hardness, Strength, Etc.)
- Metals & Non Metals : Stainless Steel, High Strength Temperature Resistant(hsrt) Super Alloys: Stellite, Incoloys Etc.
- Tool Material Hardness >> Workpiece Hardness
- Requires Much Superior Quality Of Tool Materials

Intro to AMP by Dr. Sunil Pathak

Need Of Advanced Manufacturing/ Machining Processes ??

Product Requirements

- Complex Shapes
- Machining In Inaccessible Areas
 - Low Tolerances (Say, 10 μm)

High Production Rate While Processing Difficult –To-Machine Materials

Low Cost Of Production Precision

And Ultra precision Machining (Nano-meter

Machining)

Better Surface Integrity (No Surface Defects,

Etc.)

- High Surface Finish (Nano Level Ra Value =>Nm)
- Miniaturization Of Products (Examples: Landline Phone & Mobile, Old Computers & LapTop, Etc.)
 - High Mrr

Requires Material Removal In The Form Of Atoms And / Or Molecules

ADVANCED MACHINING PROCESSES (Amps)

[1] CLASSIFICATION OF VARIOUS MANUFACTURING PROCESSES

Basic Nature	Traditional or Conventional Processes			Advanced or Unconventional Processes			
Primary	Casting and Molding Processes			Rapid Prototypi	ng Processes		
Forming				[After 1990]			
Processes	Single-Use or Expendable Mold Casting		Multiple-Use Mold	Liquid Based	Solid Based	Powder Based	
			Custing			Dased	
[Additive Or	Multiple-use	Single-use	Permanent Mold	SLA.	FDM,	SLS,	
Accretion:	Pattern	Pattern	Casting: Slush	SLT SGC	LOM	BPM,	
Create Shape			casting,			TDP,	
From Molten,			Corthias Casting Low-	SOUP	MJM,	MJS,	
Gaseous, or Solid Particles			pressure Vacuum Casting	SCS, etc.	SAHP, etc.	DSPC, etc.	
1	Sand Casting,	Investment Casting, Full-mold	Die Casting, Squeeze	For Fabrication of Polymers: Thermoformin			
	Plaster Mold Casting, Ceramic Mold Fi		Casting, Centrifugal	Extrusion, Blow, Injection Transf	ction, Reaction		
			Casting,	Molding, Calendering, Spinning, Dipping, etc.			
	Casting,	and Lost-	Semicentrifugal	For Fabrication of	of Ceramics: Blow	Molding, Dry	
	Rubber Mold Foa	Foam	Casting	Pressing, Isostatic Pressing, Slip Casting, Plas			
	Casting,	Casting	Centrifuging Casting,	FormingTechniques	3	C	
	Graphite Mold		Continuous Casting,	on of Fiber	Reinforced		
	Shell Molding,		Electromagnetic Or Levitation Casting	Composites: Pu Vacuum-bag and	ltrusion, Filament Pressure-bag Me	Winding, olding, Resin-	
	Powder Metallur Century]	gy]	Processes [Late Nineteenth	transfer Molding, Braiding, 3D- Knit	Spray Molding, Sl	heet Stamping, by Dr. Sunil Pathak	

[1] CLASSIFICATION OF VARIOUS MANUFACTURING PROCESSES (Cont...)

Basic Nature	Traditional o	or Conventional Processes	Advanced or Unconventional Processes		
Deforming	Metal Formi	ng Processes	Advanced Metal Forming Processes		
Processes	Hot- working	Cold-working Processes	High Energy Rate Forming (HERF) Processes:		
[Formative: Shapes The Material In Solid State Using Property Of Plasticity.]	Rolling, Forging, Extrusion, Hot- drawing, Piercing	 Squeezing: Cold Rolling, Cold Forging , Cold Extrusion, Swaging, Sizing, Riveting, Staking, Coining, Peening, Burnishing, Hubbing, and Thread Rolling. Bending: Angle Bending, Roll Bending, Draw and Compression Bending, Roll- forming, Seaming, Flanging, and Straightening. Shearing: Slitting, Blanking, Piercing, Lancing, Perforating, Notching, Nibbling, Shaving, Trimming, Cutoff, and Dinking. Drawing: Spinning, Embossing, Stretch Forming, and Ironing Sheet-metal Forming Operations 	Electromagnetic Forming, Explosive Forming, and Electro-hydraulic Forming. Laser Bending, 3d-laser Forming, Hot Isostatic Pressing (HIP) For Sheet Metal Components: Electroforming, Plasma Spray Forming		

Basic Nature	Traditional or Conventional Processes			Advanced/Unconventional Processes			
Material Removal Processes	Conventional Ma	ards]	esses	AMPs [After	1945]		
Subtractive	Axi-symmetric Parts	Prismatic Parts	General	Mechanical	Chemical	Electro- chemical	Thermal
: Shape the	Turning,	Milling,	Sawing,	USM,	CHM,	ECM	EDM
Product by Removing the	Facing,	Shaping,	Broaching,	AJM,	PCM,		EBM
Excess	Taper Turning,	Planning,	Hobbing,	WJM,	ТСМ		LBM
Material	Threading,		Grinding,	AWJM,			IBM
	Drilling, Boring,		Honing,	IJM,			PAM
	Reaming, etc.		Lapping,	AFM,			
			etc.	MAF,			
				MRF			
						Intro to AMP	by Dr. Sunil Pathak

[1] CLASSIFICATION OF VARIOUS MANUFACTURING (Continued)

	Joining Processes						Malaysia PAHANG
Joining	Mechani	ical Bonding	Atomic Bonding				
Or	Tempor	Permanent	ent Solid Liquid state or Fusion			Solid/ Welding	Welding
Consolidation	- ary	or semi-	state	Welding		Liquid	Techniques:
Or		permanent	welding	Electrical	Chemical	state	EBW,
Fabrication	Thread	Rivets.	Friction.	Arc welding:	Gas	Brazing.	- LBW,
Processes	joints	Stitches.	Forge,	Using Consumable	welding:	Soldering,	USW
)	Staples,	Diffusion	Electrode SMAW,	OAW, and	and	Welding of
[For assembling		Shrink-fits,	welding,	GMAW, FCAW,	PGW,	Adhesive	Plastics
the various			0'	SAW;	Thermit	bonding	(only for
component s			Cold	Those using	welding	0	Thermoplastics)
of a product]			Welding:	Non- consumable			:USW,
			Pressure,	Electrode: GTAW,			LBW,
			Explosive,	PAW,			Friction/spin Welding
			Ultrasonic	SW.			Vibration Welding
			Welding	Resistance			Friction stir
			0	welding: RSW,			welding
				RSEW,			Hot-plate welding
				RPW.			Hot-gas welding
							Implant welding
				Induction			Intrared welding
Courtoour Drof M		hdoro India)		welding			raltie AMP-by aresunie tethag
Courtesy: Prof. N	k Jain (iii T	ndore, india)		0			Communitising lechnology

Basic Nature	Traditional or Conventional Processes		Advanced or Unconventional Processes
Heat Treatment or Bulk Property		SURFACE HARDENING (ie Selective Heating) Processes: Flame Hardening, and Induction Hardening	Laser Beam Hardening and Electron Beam Hardening
Enhancing Processes	HARDENING TECHNIQUES	CASE HARDENING (ie Surface Chemistry Altering) Processes: Carburizing (pack, gas, and liquid type), Nitriding, Cyaniding or Carbonitriding.	AdditionalLayerDepositing:Ionitriding,IonIonCarburizing,IonImplantationIon
[To modify the bulk properties.]		CRACK REDUCTION TECHNIQUES: Austempering, Martempering / Marquenching	
	DUCTILITY, TOU changing process Normalizing, Temper	JGHNESS, and MACHINABILITY es: Annealing (Full and Process type), ring, Spheroidizing.	
	STRENGTHENING processes: Solid Solution Strengthening, Grain Size Refinement, Strain Hardening, Precipitation or Age Hardening, Dispersion Hardening, and Phase Transformation Hardening		Intro to AMP by Dr. Sunil Patha

Courtesy. Prof. IN K Jain (IIT muore, mula)

Basic Nature		Advanced or Unconven tional Processes	
	BURR REOMVAL: Genergy Deburring, Pow described below.	rinding, Chamfering, Filing, Centrifugal and Spindle Finishing, Thermal- ver Sanding, Power Brushing, and Mechanical Cleaning Processes as	For burr Removal: USM, AJM, WJM, AWJM, AFM, CHM, ECDE
Finishing And Surface	MECHANICAL CLE Cleaning, Barrel Finishir Electro-polishing.		
Treatment Processes	CHEMICAL CLEANI Ultrasonic Cleaning.		
[To modify the surface properties.]	COATING TECHNIQUES	COATING (<i>Liquid/Gas Deposition</i>): Painting, Chemical Conversion Coating, Hot Dip Coating, Electro-plating, Anodizing, Electroless or Autocatalytic Plating, Mechanical Plating, Porcelain Enameling.	
· · ·		CLADDING (Solid deposition)	
	VAPORIZED METAL	PhysicalVaporDeposition(PVD):Vacuum Metallizing, Sputtering, Ion Plating	
	COATING	Chemical Vapor Deposition (CVD)	to AMP by Dr. Sunil Pathak

Types of AMPs

- Basic AMPs: 15 (8 Mechanical + 1 Electrochemical + 1 Chemical + 5 Thermal)
- Derived AMP: Modification of Basic AMP to Meet Specific Objectives

 Electro Stream Drilling (ESD)
 Derived AMPs from ECM
 Electrolytic Jet Drilling (EJD)

 Derived AMP from CHM
 Photo Chemical Machining (PCM)
 Derived AMP from EDM
 Wire Electro Discharge Machining (WEDM)
 Derived AMP from AFM
 Centrifugal Force Assisted Abrasive Flow Machining (CFA-AFM)

Derived Version of HMP have also Reported TW-ECSM

Hybrid Machining Processes (HMPs)

Hybrid Machining Processes (HMPs)

[1] Concept of HMP

Universiti Malaysia PAHANG Engineering - Technology - Greated

Combining Either Two or More than Two AMPs

or

AMP + Conventional Machining Process

[2] When to Conceptualize and Develop an HMP?

- To Simultaneously Exploit the Potentials and Capabilities of the Constituent Processes; and / or
- To Minimize the Adverse Effects Induced When a Constituent Process is Used Independently
- Generally, Development of an HMP is either Material or Shape Application Specific

Intro to AMP by Dr. Sunil Pathak

HMPs are Gaining Considerable Attraction

- Meet Some of the Ultraprecision Machining Requirements
- Meet High Productivity Requirements for the Components Made of Advanced DTM Materials
- Meet the Challenging Stringent Design Requirements
- Meet Extreme Surface Quality and Tolerance Requirement

Types of HMPs [Can be Classified Into Two Major Categories (Kozak & Rajurkar, 2001)]

- Processes in which Constituent Processes are Directly Involved in Material Removal;
- Processes in which only ONE of the Participating Processes Directly Removes the Material while others Only ASSIST in Removal By Changing the Conditions of Machining in a Positive Manner
- Most of the HMPs are in their Inception and Development Phase
- Sustained Research is Required to Transform HMPs into a Matured Manufacturing Technology and for Their Successful Commercialization and Industrial Applications

Process	Combining Energy Sources	Mechanism of Material Removal	Tool	Transfer Media	
	Malaysia PAHANG				
ECH	Electrochemical + Mechanical	Electrochemical Dissolution and Abrasion	n Abrasive Sticks	Electrolyte	Engineering + Tachnology + Creelivity
ECG	Electrochemical + Mechanical	Electrochemical Dissolution and Abrasion	n AbrasiveWheel	Electrolyte	
ECAG	Electrochemical + Mechanical	Electrochemical Dissolution and Abrasion	n Metal Bonded Abrasive Wheel	Electrolyte	
	Conven	tional Machining + Thermal A	MP	·	Examples of
AEDM	Mechanical + Thermal	Melting, Evaporation and Abrasion	Loose Abrasive Particles	Dielectric	HMPs
EDAG	Mechanical + Thermal	Melting, Evaporation and Abrasion	Metal Bonded Abrasive Wheel	Dielectric	[Conventional
EDDG	Mechanical + Thermal	Melting, Evaporation and Abrasion	Diamond wheel	Dielectric	Machining +
LAT	Mechanical + Thermal	Shearing and Heating	TurningTool	Air	AMP]
PAT	Mechanical + Thermal	Shearing and Heating	TurningTool	Air	
LAE	Chemical + Thermal	Chemical Dissolution and Heating	Mask	Etchant	
RUM	Mechanical + Ultrasonic Vibration	Abrasion	Sonotrode having Diamond Abrasives	Coolant	
UAT	Mechanical + Ultrasonic Vibration	Shearing	Turning Tool		ntro to AMP by Dr. Sunil Pathak Communitising Technology

Process	Combining	Mechanism of	Tool	Transfer	
	Energy Sources	Material Removal		Media	Universiti
		Electrochemical + Therma	1		PAHANG
ECSM or	Electrochemical +	Melting and/Or	Electrode	Electrolyte	Engineering • technology • Creativity
	Thermal	Evaporation			
ECAM					
LADOM	Electro chomical +	Floatno abomigal			
LAECM	Thermal	Dissolution and Heating	Electrode	Electrolyte	
		Dissolution and ficating			
	Elect	trochemical + Mechanical			
USECM	Electrochemical +	Electrochemical	Sonotrode	Electrolyte	Examples of
	Ultrasonic Vibration	Dissolution			
ECMAF	Electrochemical +	Electrochemical	Abrasives	Electrolyte	HMPs [Two or
	Mechanical	Dissolution + Abrasion			
	More AMPs]				
USEDM	Thermal +	Melting and Evaporation	Sonotrode	Dielectric	
	UltrasonicVibration				
USLBM	Thermal +	Melting and Evaporation	Laser Beam	Air	
	Ultrasonic Vibration				
		Two Mechanical AMPs			
MRAFF	Two Mechanical AMPs	Shearing	Abrasives	MR Fluid	
BEDMM	Electrochemical +	Electrochemical, Melting	Rotating Metal	Water Glass	
	Mechanical +	and Mechanical Rupture	Brush	Solution In	
	Thermal	_		Water COSO Int	ro to AMP by Dr. Sunil Pathak
				BY NC SA	Communitising Technology

Typical Examples of Parts Developed by AMPs

FEMALE

Figure: 1 Typical parts made by electrochemical machining. (a) Turbine blade made of nickel alloy of 360 HB. Note the shape of the electrode on the right. (b) Thin slots on a 4340-steel roller-bearing cage. (c) Integral airfoils on a compressor disk.

Design Made using 3D Printing

Intro to AMP by Dr. Sunil Pathak

Chemical in its direct

form

Universiti Malaysia PAHANG Engregative - Technology - Oreability

Process performance is independent of Workpiece Material properties such as hardness.Toughness, ductility, brittleness etc.

Process Performance highly depends upon the thermal, electrical, magnetic and chemical properties of the workpiece material

Usually AMPs Possesses lower material removal rate as compared to conventional processes but in turns AMPs provide high quality parts

Initial investment cost of setting an AMP is high due to costly machine tools and high operating costs

Dr Sunil Pathak, PhD - IIT Indore (MP) India Senior Lecturer Faculty of Engineering Technology University Malaysia Pahang, Kuantan Malaysia <u>https://www.researchgate.net/profile/Sunil_Pathak4</u> <u>https://scholar.google.co.in/citations?user=9i_j3sMAAAAJ&hl=en</u>

