

Properties of Materials BTM 2413

CHAPTER 2: THE ORIGIN OF ENGINEERING MATERIALS by Dr Ratnakar Kulkarni Faculty Engineering Technology kulkarni@ump.edu.my

Introduction

- Aims
 - To introduce the origin of engineering materials, their method of formation and distinguish between different materials
- Expected Outcomes
 - Know the origin of engineering material.....
 - Summarize the methods of formation of engineering materials from elements
 - Distinguish the nature of metals, ceramics, polymers and composites
- Other related Information
- References

- Kenneth G Budinsky & Michael G Biddinsky, Engineering Materials: Properties and Selection, Ed 9, Prentice Hall

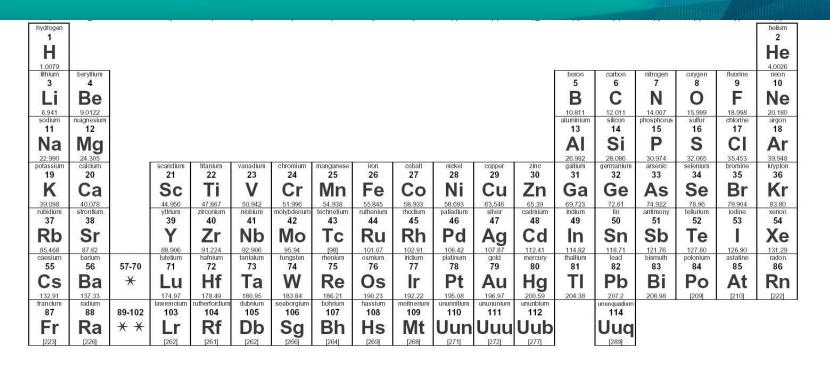
Organic versus Inorganic

ORGANIC materials derived from living things usually contain carbon and hydrogen Eg : Petroleum, Foods, Polymer

INORGANIC materials those substances not derived from living things

Eg : sand, rock, water, metals,

The composition or component of materials is *element*



Elements

- Defined as pure substance that cannot be broken down by chemical means to a simpler substance.
- An element consists of atom
- Atom composed of proton, neutron and electrons
- Example of element : Aluminum, Carbon, Iron

Periodic Table of Elements

*Lanthanide series	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
**Actinide series	actinium 89	thorium 90	protactinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	curium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
	2271	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]

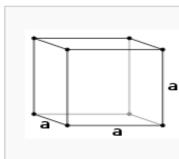
Importance of Atom

- Periodic table, electron configuration, atomic number is not so important for technologist in manufacturing
- Sufficient to be aware that

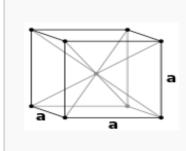
- atoms play an important role in forming usable compound

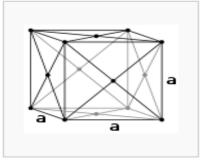
- atoms determine the properties of materials

Forming Engineering Materials from the Elements


Materials form from

- pure elemental state. eg: gold, silver, mercury are metallic forms, Carbon nonmetal, Inert gases such as He, Ar
- Alloy a metal combined with one or more other elements e g brass, bronze, stainless steel
- Compound chemically combined elements
- Mixture physically blend of two or more elements




The solid state crystalline and amorphous

- Solids that do not have a repetitive three D pattern of atoms are amorphous
- Solid have crystalline structure repetitive 3D pattern of atom
- most metal and inorganics have crystalline structure
- Figures above show crystal structure called *unit cell* or *crystal*

cell

Simple cubic (P)

Body-centered cubic (I)

Face-centered cubic (F)

The solid state

- cells form a crystal
- If many crystals are growing, the crystals will meet and form grains
- Interface between two grains called *grain boundary*.

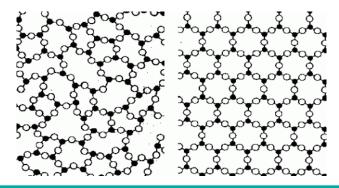



Figure : grain structure of metal

The solid state

- The properties of crystalline materials are affected by
 - i) type of crystal structure (BCC, FCC, HCP)
 - ii) grain size
 - iii) strength of the bond between atoms
- Solid that has not crystalline structure is called *amorphous*
- *Non crystalline* solid lack a systematic and a regular arrangement of atoms
- Glasses and plastic are amorphous
- Figure shows atomic structure of silicon dioxcide (SiO₂)

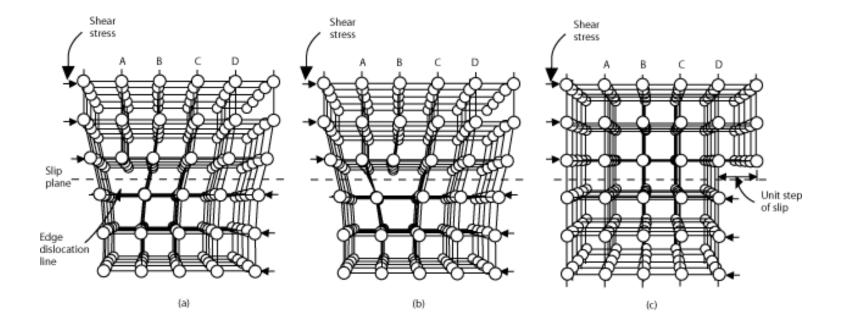
The solid state

Crystalline vs amorphous

- Crystalline solids are the most stable solid
- Strength of all the bond of crystalline atom are same, whereas strength of different bond is different for amorphous
- Crystalline solids have sharp melting point whereas amorphous solid don't have sharp melting point

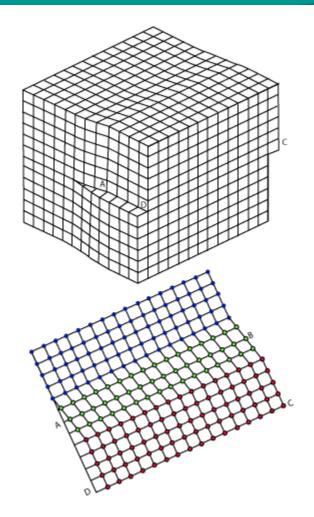
The nature of Metals

- Metals are elements with valence of 1, 2 or 3
- Solid composed atoms held together by matrix of electron.
- The electrons associated are free to move throughout the volume of crystal; that makes metals a good conductor heat and electricity
- Other properties that distinguish metals are malleability, opacity and ability to be strengthened

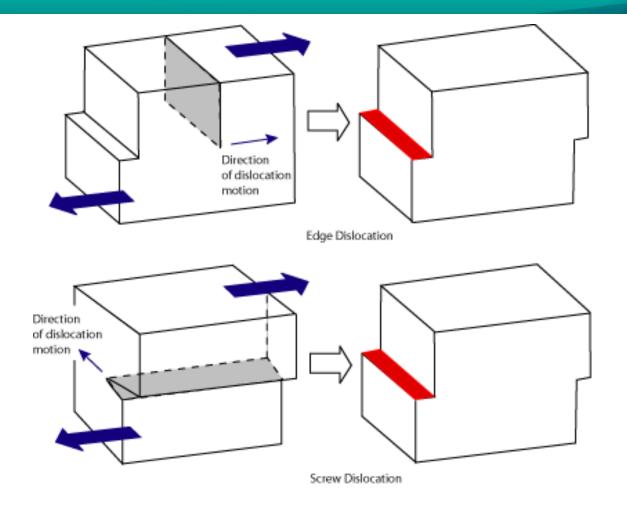


Dislocations in Crystals

- Dislocations are areas were the atoms are out of position in the crystal structure. Dislocations are generated and move when a stress is applied. The motion of dislocations allows slip – plastic deformation to occur.
- Deformation by dislocation is one of the characteristics of metals that makes them most useful engineering material



Edge dislocations



Screw Dislocations

Edge and Screw Dislocations

Nature of Ceramics

- Elements with valence 5,6,7 are nonmetals and with valence 8 are inert
- Elements with valence of 4 are metalloids; sometimes behave as metals, sometimes as nonmetals
- Ceramic can be defined as a combination or compound of one or more metals with nonmetallic elements. They usually have very rigid covalent or ionic bonds between adjacent items

Ceramics

- In ceramics the bonds are very strong between neighboring atoms making crystalline ceramic very brittle
- Deformation by dislocation motion or atomic slip is very difficult
- Ceramics tend to be electronic insulators because electrons are tied up in bonding and are not free to move throughout the crystal
- Usually can not be strengthened by cold working or precipitation hardening
- Fibers and other materials are added to strengthen the ceramics

Nature of Polymers

- Engineering materials known as plastics are more correctly called polymers
- Polymers are substances composed of long chain repeating molecules
- Long chain polymers usually are weaker than ceramics and metals because the molecular chains are bounded to each other only with weak electrostatic force called Van der Waals bonds

Nature of Composites

- A composite is a combination of two or more materials that has properties that the component materials do not have by themselves
- Wood is a composite of cellulose fiber held together with a glue or matrix of soft lignin
- In engineering materials composites are formed by coatings, internal additives and laminating
- Applications are sports equipment, aircraft, chemical process industry etc

Global Considerations

- Chemists and chemical engineers are in demand to work at finding new feedstock for bio-based fuels
- A great deal of chemistry research and development is aimed at changing processes so as they emit less carbon
- Substantial work being done to find substitutes for engineering materials that are becoming scarce or too costly to use

