

ELECTRICAL FUNDAMENTALS

SCIENCE OF ELECTRICITY AND ELECTRONICS

by Nur Hafeizza binti Ramly Faculty of Engineering Technology hafeizza@ump.edu.my

Chapter Description

- Aims
 - Identify the concept of electrical charge, electric current, voltage, and resistance.
 - Apply Ohm's law to solve for unknown voltage and current values.
- Expected Outcomes
 - Students should be able to identify the concept of electrical charge, electric current, voltage, and resistance.
 - Students should be able to apply Ohm's law to solve for unknown voltage and current values..
- References
 - Thomas L.Floyd "Principles of Electric Circuit" (9th ed.) Prentice Hall, Inc, 2010
 - Charles K. Alexander and Matthew N.O Sadiku "Fundamental of Electric Circuit" (5th ed.) McGraw Hill, 2013
 - John Hiley, Keith Brown and Ian McKenzie Smith "Electrical and Electronics Technology" (11th ed) Prentice Hall, Inc, 2012

The application of Electricity & Electronics

- Technology revolves around us and affects our lives in:
- Transportation
- Power system
- The first Integrated Circuit was developed in 1950s

Transportation

Source : http://auto.howstuffworks.com/hybrid-car2.htm

Power System

Source : https://energy.gov/energysaver/hybrid-wind-and-solar-electric-systems

Atoms and Their Structure

- An atom contains of a nucleus of protons and neutrons
- Nucleus is surrounded by a group of orbiting electrons that carries a negative charge which equals to the magnitude of positive charge of proton.
- The atom is electrically neutral when the number of electrons is the equal to the protons.
- The atom with an excess or deficit of electrons is called ion.

Electrical Charge

For unlike charges , they will attract each other while alike charges, they will repel.

Source : https://commons.wikimedia.org/wiki/File:Charges_repulsion_attraction.svg

Coulomb's Law

$$F = k \frac{Q_1 Q_2}{r^2} \quad \text{[newtons, N]}$$

 $\begin{array}{l} \mathsf{F}-\text{force between two charges in N}\\ \mathsf{Q}_1,\,\mathsf{Q}_2-\text{charges in coulombs}\\ \mathsf{r}-\text{center-to-center spacing between charges in meters}\\ \mathsf{k}=9\times10^9\,\mathsf{Nm}^2/\mathsf{C}^2 \end{array}$

Circuit Diagram

• Pictorial diagrams

Block diagrams

• Schematic diagrams

Block Diagrams

 Blocks represent portions of a system

Source : http://www.texample.net/tikz/examples/control-system-principles/

Pictorial Diagrams

 Help visualize circuits by showing components as they actually appear

Source : https://commons.wikimedia.org

Schematic Diagrams

Source : http://texample.net/tikz/examples/area/electrical-engineering/

What is voltage?

- When two objects have a difference in charges
 - They have a potential difference or voltage between them
- The unit: volt (V)
- Thunderclouds
 - Millions of volts between them

Voltage

- Voltage between two points
 - One volt if it requires one joule of energy to move one coulomb of charge from one point to another

$$1 \text{ volt} = \frac{1 \text{ joule}}{1 \text{ coulomb}}$$

DC Voltage Sources

• DC voltage

Direct current: current is always in the same direction

Symbol

Current

- Current : rate of flow of charges
- Electric current : movement of charges
- More electrons per second passing through a circuit, the greater the current

Current

- Unit : ampere (A)
- One ampere

 Current in a circuit when one coulomb of charge passes a given point in one second

• Current (/) = Charge (Q)/time (t)

Current

Electron current flow	Conventional current flow
Electrons flow from the negative terminal of a battery to the positive terminal	Currents flow from positive terminal to negative terminal

- Alternating current changes direction cyclically
- Alternating voltage changes sign cyclically

Voltage sources

- Electronic power supplies
- Batteries
 - Alkaline
 - Lithium
 - Nickel-Cadmium
- Solar cells
- Fuel cells
- DC generators

Resistance

Source : https://en.wikipedia.org

Science of Electricity and Electronic By Nur Hafeizza Ramly http://ocw.ump.edu.my/course/view.php?id=617

Communitising Technology

Ohm's Law

- Current in a resistive circuit
 - Directly proportional to its applied voltage
 - Inversely proportional to its resistance

$$I = \frac{E}{R}$$

- I = current (amperes, A)
- E = voltage (volts, V)
- $R = resistance (ohms, \Omega)$

Ohm's Law

• For a fixed resistance

Doubling voltage doubles the current

- For a fixed voltage
 - Doubling resistance halves the current

$E = I \times R$ I = E / RR = E / I

Science of Electricity and Electronic By Nur Hafeizza Ramly http://ocw.ump.edu.my/course/view.php?id=617

Communitising Technology

Electrical Prefixes

Power of 10	Prefix	Symbol
10 ¹²	Tera	Т
10 ⁹	Giga	G
10 ⁶	Mega	Μ
10 ³	Kilo	К
10 ⁻³	Milli	Μ
10-6	Micro	μ
10 ⁻⁹	Nano	n
10 ⁻¹²	pico	р

Conclusion of The Chapter

- When 2 points are having a difference in charges, there will be a potential difference or voltage.
- Electric current is a movement of the electrons
- Ohm's Law is an equation that consists of relationship among voltage, current and resistance

Reference

Electricity and Electronics by Gerrish, Dugger and Roberts, 10th edition, 2009, GW Publisher

Circuit Analysis: Theory and Practice by A. H. Robbins, W. C. Miller, 4th edition, 2006, Thomson Delmar Learning

Introductory Circuit Analysis by R. L. Boylestad, 11th edition, 2007, Prentice Hall

