
BTE2313

Chapter 8: Arrays

by

Sulastri Abdul Manap
Faculty of Engineering Technology

sulastri@ump.edu.my

For updated version, please click on

http://ocw.ump.edu.my

mailto:sulastri@ump.edu.my
http://ocw.ump.edu.my/

Objectives

• In this chapter, you will learn about:

1. Declaring and Initializing arrays

2. Accessing/Selecting element of arrays

3. Working with multi-dimensional arrays

4. Arrays as parameters

Introduction

• Array is a list of more than one variable having
the same name and data type.

• Array is a fixed-size collection of consecutive
memory locations. Each memory location
accessed by a relative address called index or
subscript.

• Every index starts with 0.

• Two types of Array:

One-Dimensional Array

Multi-Dimensional Array

Introduction (cont.)

• Array can be described like a block of building of
the same type, containing a number of houses
and each house has different number/address
as a reference.

• Example : int house[5];

house

house[4]

house[3]

house[2]

house[1]

house[0]

Elements

Array Declarations

 Format:

Datatype Array_name [Array_Size];

 Datatype is the data type (int, float, double, etc.)

 Array_name is an identifier

 Array_Size states the size/length of the array in
terms of number of elements that must be enclosed in
square brackets []

• For example:
int numbers[1000];

double rays[200];

string students[25];

char name[25];

Array Declarations: Example #1

 Declaring an array, with the name myNum , type
double and has 10 elements

double myNum[10];

 Array myNum can store up 10 floating numbers with
the first number occupying location myNum [0]; the
second number at location myNum [1] and last
number at location myNum [9].

Array Declarations: Example #2

• For the PhoneBills program, declare an array of
twelve floating point values:

float phone_bills[12];

• When a programmer creates a list using one
dimension (one size) value, it is referred to as a
single-dimensional array and can be thought of as a
single list or as a row of values.

• These values are stored contiguously in memory.

Example #2 (cont.)

The phone_bills array. It is useful to visualize an array as a group of boxes.

Array Initializations

 Values must be enclosed with braces { }.

 If there is more than one value, separated by
commas.

 MUST provide the number of values not more than
the size of array.

 Example 1:
int number[10] = {0,1,2,3,4,5,6,7,8,9};

0 1 2 3 4 5 6 7 8 9

number[0] number[1] number[2] … number[9]

Array Initializations (cont.)

Example 2:
char vowel[10] = {‘a’,’e’,’i’,’o’,’u’};

a e i o u \0
vowel

Example 3:
float mynum[5] = {1.2,1.3,1.5,1.5,1.5};

Example 4:
string names[3] = {“Ali”,”Chong”,”Ravi”};

1.2 1.3 1.5 1.5 1.5 1.5
mynum

Array Initializations (cont.)

Example 4:

int mynumbers[10];

// Declare the array

mynumbers[0] = 3; // 3 is stored as 1st element

mynumbers[9] = 2; // value 2 is stored as last element

mynumbers[-1] = 9; // invalid index (cannot have –ve index)

mynumbers[10] = 2; // invalid index (last valid index is 9)

mynumbers[2.3] = 4; // error! (1.3 is not an integer)

3 2

mynumbers[0] mynumbers[9]

Accessing Arrays

 All values in an array can be accessed like the value
of a normal variable of the same type.

 The syntax is: Array_name[index]

 Brackets [] are used to carry out two tasks: to
indicate the length/size of an array in declarations;
and to indicate the index number for the array
elements when they are accessed.

0 1 2 3 4 5 6 7 8 9

mynumber[0] mynumber[1]
mynumber[2]

… mynumber[9]

for Loops and Arrays

• The for loop provides an efficient method for going through an
array.

• The index of the loop is used not only as a counter for the loop, it
can also be used as the index value for the array.

Accessing Arrays: Example #1

#include <iostream>

using namespace std;

int mynum[] = {15, 3, 43, 32, 1781};

int count, sum=0;

int main ()

{

for (count=0 ; count<5 ; ++count)

{

cout << mynum[count] << endl;

result += mynum[count];

}

cout << sum;

return 0;

}

Array Out of Bounds

• C++ does not do any type of array boundary
checking when a program uses arrays.

• The program does not warn you or stop the
program if a statement causes the program to
access an array element that is not legally declared.

• This out of bounds array feature of the C++
language can trash your data or crash your program
when the program is executed.

Array Out of Bounds(cont.)

Arrays as Parameters

 It is impossible to directly pass as argument, the whole
chunk of memory as an array into a function.

 Instead of passing the whole array, an array can be
passed as argument into a function by providing its
address (by reference)

 Example:

void procedure (int arg[]) //function prototype

int myarray [40]; //array declaration

procedure (myarray); //function call by reference

Arrays as Parameters: Example

#include <iostream>

using namespace std;

void print_array (int arg[], int len);

int main ()

{

float array1[] = {2.5, 10.1, 15.3};

float array2[] = {2.1, 11.4, 16.0, 8.2, 10.1};

print_array (array1,3);

print_array (array2,5);

}

void print_array (int arg[], int len){

for (int i=0; i<len; i++)

cout << arg[i] << " ";

cout << "\n";

}

Multi-Dimensional Array

 Multidimensional arrays is an array that has more than
one dimension, dimensions for rows and columns

 A two-dimensional array (2D) has two indexes
(subscript).

Second dimension (columns)

First

dimension

(rows)

2-Dimensional Array

 The declaration of 2D arrays is quite similar with one
dimensional array.

 A 2D arrays have two subscripts which the first is for the
number of rows and the second is for columns.

 The declaration of two-dimensional array takes the form :

datatype Array_name[row_size][column_size];

 Example

char name[3][10];

int list[rows][cols];

int x[3][4];

2-Dimensional Array (cont.)

 Example

num[4][1]

num[3][1]

num[2][1]

num[1][1]

num[0][1]

number

num[4][0]

num[3][0]

num[2][0]

num[1][0]

num [0][0]

int num[5][2];

Rows

Columns

2-Dimensional Array Initialization

 Example

int number[5][2] =

{ {99,3},{12,30},{40,15},{36,70},{10,2} };

or

int number[5][2] =

{99,3,12,30,40,15,36,70,10,2};

 When compiler encounters the declaration, it
allocates memory locations for the elements in a
linear fashion

