
BTE2313

Chapter 8: Arrays

by

Sulastri Abdul Manap
Faculty of Engineering Technology

sulastri@ump.edu.my

For updated version, please click on

http://ocw.ump.edu.my

mailto:sulastri@ump.edu.my
http://ocw.ump.edu.my/

Objectives

• In this chapter, you will learn about:

1. Declaring and Initializing arrays

2. Accessing/Selecting element of arrays

3. Working with multi-dimensional arrays

4. Arrays as parameters

Introduction

• Array is a list of more than one variable having
the same name and data type.

• Array is a fixed-size collection of consecutive
memory locations. Each memory location
accessed by a relative address called index or
subscript.

• Every index starts with 0.

• Two types of Array:

One-Dimensional Array

Multi-Dimensional Array

Introduction (cont.)

• Array can be described like a block of building of
the same type, containing a number of houses
and each house has different number/address
as a reference.

• Example : int house[5];

house

house[4]

house[3]

house[2]

house[1]

house[0]

Elements

Array Declarations

 Format:

Datatype Array_name [Array_Size];

 Datatype is the data type (int, float, double, etc.)

 Array_name is an identifier

 Array_Size states the size/length of the array in
terms of number of elements that must be enclosed in
square brackets []

• For example:
int numbers[1000];

double rays[200];

string students[25];

char name[25];

Array Declarations: Example #1

 Declaring an array, with the name myNum , type
double and has 10 elements

double myNum[10];

 Array myNum can store up 10 floating numbers with
the first number occupying location myNum [0]; the
second number at location myNum [1] and last
number at location myNum [9].

Array Declarations: Example #2

• For the PhoneBills program, declare an array of
twelve floating point values:

float phone_bills[12];

• When a programmer creates a list using one
dimension (one size) value, it is referred to as a
single-dimensional array and can be thought of as a
single list or as a row of values.

• These values are stored contiguously in memory.

Example #2 (cont.)

The phone_bills array. It is useful to visualize an array as a group of boxes.

Array Initializations

 Values must be enclosed with braces { }.

 If there is more than one value, separated by
commas.

 MUST provide the number of values not more than
the size of array.

 Example 1:
int number[10] = {0,1,2,3,4,5,6,7,8,9};

0 1 2 3 4 5 6 7 8 9

number[0] number[1] number[2] … number[9]

Array Initializations (cont.)

Example 2:
char vowel[10] = {‘a’,’e’,’i’,’o’,’u’};

a e i o u \0
vowel

Example 3:
float mynum[5] = {1.2,1.3,1.5,1.5,1.5};

Example 4:
string names[3] = {“Ali”,”Chong”,”Ravi”};

1.2 1.3 1.5 1.5 1.5 1.5
mynum

Array Initializations (cont.)

Example 4:

int mynumbers[10];

// Declare the array

mynumbers[0] = 3; // 3 is stored as 1st element

mynumbers[9] = 2; // value 2 is stored as last element

mynumbers[-1] = 9; // invalid index (cannot have –ve index)

mynumbers[10] = 2; // invalid index (last valid index is 9)

mynumbers[2.3] = 4; // error! (1.3 is not an integer)

3 2

mynumbers[0] mynumbers[9]

Accessing Arrays

 All values in an array can be accessed like the value
of a normal variable of the same type.

 The syntax is: Array_name[index]

 Brackets [] are used to carry out two tasks: to
indicate the length/size of an array in declarations;
and to indicate the index number for the array
elements when they are accessed.

0 1 2 3 4 5 6 7 8 9

mynumber[0] mynumber[1]
mynumber[2]

… mynumber[9]

for Loops and Arrays

• The for loop provides an efficient method for going through an
array.

• The index of the loop is used not only as a counter for the loop, it
can also be used as the index value for the array.

Accessing Arrays: Example #1

#include <iostream>

using namespace std;

int mynum[] = {15, 3, 43, 32, 1781};

int count, sum=0;

int main ()

{

for (count=0 ; count<5 ; ++count)

{

cout << mynum[count] << endl;

result += mynum[count];

}

cout << sum;

return 0;

}

Array Out of Bounds

• C++ does not do any type of array boundary
checking when a program uses arrays.

• The program does not warn you or stop the
program if a statement causes the program to
access an array element that is not legally declared.

• This out of bounds array feature of the C++
language can trash your data or crash your program
when the program is executed.

Array Out of Bounds(cont.)

Arrays as Parameters

 It is impossible to directly pass as argument, the whole
chunk of memory as an array into a function.

 Instead of passing the whole array, an array can be
passed as argument into a function by providing its
address (by reference)

 Example:

void procedure (int arg[]) //function prototype

int myarray [40]; //array declaration

procedure (myarray); //function call by reference

Arrays as Parameters: Example

#include <iostream>

using namespace std;

void print_array (int arg[], int len);

int main ()

{

float array1[] = {2.5, 10.1, 15.3};

float array2[] = {2.1, 11.4, 16.0, 8.2, 10.1};

print_array (array1,3);

print_array (array2,5);

}

void print_array (int arg[], int len){

for (int i=0; i<len; i++)

cout << arg[i] << " ";

cout << "\n";

}

Multi-Dimensional Array

 Multidimensional arrays is an array that has more than
one dimension, dimensions for rows and columns

 A two-dimensional array (2D) has two indexes
(subscript).

Second dimension (columns)

First

dimension

(rows)

2-Dimensional Array

 The declaration of 2D arrays is quite similar with one
dimensional array.

 A 2D arrays have two subscripts which the first is for the
number of rows and the second is for columns.

 The declaration of two-dimensional array takes the form :

datatype Array_name[row_size][column_size];

 Example

char name[3][10];

int list[rows][cols];

int x[3][4];

2-Dimensional Array (cont.)

 Example

num[4][1]

num[3][1]

num[2][1]

num[1][1]

num[0][1]

number

num[4][0]

num[3][0]

num[2][0]

num[1][0]

num [0][0]

int num[5][2];

Rows

Columns

2-Dimensional Array Initialization

 Example

int number[5][2] =

{ {99,3},{12,30},{40,15},{36,70},{10,2} };

or

int number[5][2] =

{99,3,12,30,40,15,36,70,10,2};

 When compiler encounters the declaration, it
allocates memory locations for the elements in a
linear fashion

