For updated version, please click on -
Universiti

Q Malaysia

Eollall

BTE2313

Chapter 8: Arrays

)Y
Sulastri Abdul Manap
Faculty of Engineering Technology

mailto:sulastri@ump.edu.my
http://ocw.ump.edu.my/

* In this chapter, you will learn about:

1. Declaring and Initializing arrays

2. Accessing/Selecting element of arrays
3. Working with multi-dimensional arrays
4

Arrays as parameters

* Array is a list of more than one variable having

the same name and data type.

e Array is a fixed-size collection of consecutive
memory locations. Each memory location

accessed by a relative address called index or
subscript.

* Every index starts with O.
* Two types of Array:
—>0ne-Dimensional Array

- Multi-Dimensional Array l@(D@@]
-~

e Array can be described like a block of building of

the same type, containing a number of houses
and each house has different number/address
as a reference.

* Example:int house[5];

house [0]

house[1]

Elements —> house[Z]

house [3]

house[4]

house

Format:

Datatype Array name [Array Size];
Datatype is the data type (int, float, double, etc.)
Array_name is an identifier

Array Size states the size/length of the array in
terms of number of elements that must be enclosed in
square brackets [|

For example:
int numbers[1000];
double rays[200];

string students[25];

char name[25];

" Declaring an array, with the name myNum , type
double and has 10 elements

double myNum[10];

" Array myNum can store up 10 floating numbers with
the first number occupying location myNum [0]; the
second number at location myNum [1] and last
number at location myNum [9].

[@lecle]

* For the PhoneBills program, declare an array of
twelve floating point values:

float phone bills[12];

* When a programmer creates a list using one
dimension (one size) value, it is referred to as a
single-dimensional array and can be thought of as a
single list or as a row of values.

* These values are stored contiguously in memory.

[@lecle]

int main()

phone_bills[0]
float phone bi111s[12];

\, phone_bills[1]

phone_bills[2]
Each box represents one element
of the array.

phone_bills[11]

P

Array Index
name

The phone bills array. It is useful to visualize an array as a group of boxes.

= Values must be enclosed with braces { }.

* |f there is more than one value, separated by
commas.

= MUST provide the number of values not more than
the size of array.

= Example 1:
int number[10] = {0,1,2,3,4,5,6,7,8,9};

0 11 |2 (3 a5 |6 17 |8 19

TN g

number [0] number[l] number|[2] number [9]

char vowel[1l0] = {‘a’,’e’,’i’,’0’ ,'u’};

a e i o lu_\0_

vowel

Example 3:
float mynum[5] = {1.2,1.3,1.5,1.5,1.5};

mynum

Example 4:
string names [3] — {\\Ali// , //Chongll , IIRavi//} ;

Example 4:

int mynumbers[10];

// Declare the array

mynumbers
mynumbers
mynumbers
mynumbers

mynumbers

0] =3;// 3 is stored as 15t element
9] =2;//value 2 is stored as last element

-1] =9; // invalid index (cannot have —ve index)
10] = 2; // invalid index (last valid index is 9)

2.3]=4;//error! (1.3 is not an integer)

mynumbers [0] mynumbers [9]

= All values in an array can be accessed like the value
of a normal variable of the same type.

" The syntaxis: Array name[index]
0 1 J2 |3 [4 |5 |6 |7 [8 [9

TN 7

mynumber [0] mynumber [1] mynumber [2] mynumber [9]

" Brackets [] are used to carry out two tasks: to
indicate the length/size of an array in declarations;
and to indicate the index number for the array
elements when they are accessed.

Y MG SA
Communitising Technology

for Loops and Arrays

* The for loop provides an efficient method for going through an

array.

 The index of the loop is used not only as a counter for the loop, it
can also be used as the index value for the array.

S Obtain monthly billing information
for{i = 0; i < 12; ++1)
{
cout << "“n Enter bi11 for month & "
cin == phone_bil1s[1];

F

The first time this loop runs, i = 0.
It asks the user for month number 1 (i+1=0+1 =1).
The user's value (i.e.,45.14) is placed in phone_bills[d].

The second time this loop runs, i=1.
It asks the user for month number 2.
The value the user enters {i.e., 45.14) is placed in phone_bills[1].

The last time this loop runs, 1=11.

- It asks the user for month number 12,

The value the user enters (i.e., 48.99) is placed in phone_bills[11].

<< 1 + l<<

i

45.14

45.14

47.72

— ——{ 48909

phone_bills[0]

phone_bills[1]

phone_bills|2]

#include <iostream>

using namespace std;
int mynum[] = {15, 3, 43, 32, 1781};
int count, sum=0;

int main ()
{
for (count=0 ; count<5 ; ++count)
{
cout << mynum[count] << endl;
result += mynum|[count];
}
cout << sum;

return 0;

e C++ does not do any type of array boundary
checking when a program uses arrays.

* The program does not warn you or stop the
program if a statement causes the program to
access an array element that is not legally declared.

* This out of bounds array feature of the C++
language can trash your data or crash your program
when the program is executed.

[@lecle]

Dieclaration _l

int High[4], Mid[4], Low{4]:

Memory :
- memory space.
Low iiid High _,/I

(O 0] 2] Brom [21 Brjoe ny 21 (5 =

B 1| 5| 0| 5 [32|55)52|53 (959)9

e o e

o
Problem here - __\\I Low[4] id[4] High[4]
CRASH! with

L : :
For(i = 0; 1 <= 4; ++1) Access Violation

P rupns to 1 =0 to 1 = 4

therefore Low[4] == Mid[0]
Mid[4] == High[0O]

: High[4] => who knows? ‘@@@@|
C

" |tisimpossible to directly pass as argument, the whole
chunk of memory as an array into a function.

" |nstead of passing the whole array, an array can be
passed as argument into a function by providing its
address (by reference)

= Example:

void procedure (int arg[]) //function prototype
int myarray [40]; //array declaration

procedure (myarray); //function call by reference

[@lecle]

#include <iostream>

using namespace std;
void print array (int arg[], int len);
int main ()
{
float arrayl[] = {2.5, 10.1, 15.3};
float array2[] = {2.1, 11.4, 16.0, 8.2, 10.1};
print array (arrayl,3);
print array (array2,5);

}

void print array (int arg[], int len) {
for (int i=0; i<len; i++)
cout << arg[i] << " ";
cout << "\n";

= Multidimensional arrays is an array that has more than
one dimension, dimensions for rows and columns

= A two-dimensional array (2D) has two indexes

(subscript). . :
Second dimension (columns)

—

First
dimension
(rows)

Y . (© 000 |

= The declaration of 2D arrays is quite similar with one
dimensional array.

= A 2D arrays have two subscripts which the first is for the
number of rows and the second is for columns.

= The declaration of two-dimensional array takes the form :
datatype Array name[row size] [column size];
= Example

char name[3][10];

int list[rows] [cols];

int x[3][4];

= Example
int num[5] [2];

num [0][O] num[0][1]
num[T1][0] num[T][1]
num(2][0] num(2][1]
num(3][0] num(3][1]
num[4][0] num(4][1]
number
— _

Columns

> ROwS

= Example
int number[5] [2] =
{ {99,3},{12,30},{40,15},{36,70},{10,2} };

Oor

int number([5] [2] =
{99,3,12,30,40,15,36,70,10,2};
» When compiler encounters the declaration, it

allocates memory locations for the elements in a
linear fashion

