
BTE2313

Chapter 7: Function

by

Sulastri Abdul Manap
Faculty of Engineering Technology

sulastri@ump.edu.my

For updated version, please click on

http://ocw.ump.edu.my

mailto:sulastri@ump.edu.my
http://ocw.ump.edu.my/

Objectives

• In this chapter, you will learn about:

1. Create and apply user defined function

2. Differentiate between standard library
functions and user defined functions

3. Able to use both types of functions

Introduction

• A function is a complete section (block) of C++ code with a
definite start point and an end point and its own set of
variables.

• Functions can be passed data values and they can return data.

• Functions are called from other functions, like main() to
perform the task.

• Two types of function:

1. User defined function: The programmer writes their own
function to use in the program.

2. Standard library function: Function already exist in the C++
standard libraries http://www.cplusplus.com/reference/

http://www.cplusplus.com/reference/

Introduction (cont.)

• Advantages of functions:

Easier to solve complex task by dividing it into
several smaller parts (structured programming)

Functions separate the concept (what is done)
from the implementation (how it is done)

Functions can be called several times in the
same program, allowing the code to be reused.

Three Important Questions

• “What is the function supposed to do? (Who’s job is
it?”)
– If a function is to read all data from a file, that function

should open the file, read the data, and close the file.

• “What input values does the function need to do its
job?”
– If your function is supposed to calculate the volume of a

pond, you’d need to give it the pond dimensions.

• “What will my function return to me?”
– What will the function give you when it has finished its

task?

Functions: Basic Format

• The return_type is the data type of the value
returned from the function.

• The function_name is the identifier (name) of the
function and is used to access the function.

• The input parameter list is the list of the input
variable data types and names that the function
receives.

return_type function_name(input parameter list)

{

// Body of function

}

Three examples of simple functions.

Functions: Basic Format (cont.)

• Rules for declaring functions.

– The function name must follow standard C++
naming conventions.

– There may be one return type.

– If there is no return type, the void data type is
used.

– The input argument list must have data type and
names (separated by commas)

– You may pass in as many arguments as you like.

– If your list is empty (no arguments are passed), the
parentheses will be empty () but still required

Functions: Basic Format (cont.)

• WriteHello() is passed with nothing, and
returns nothing.

void WriteHello()

{

cout << "\n Hello from a function!";

}

Basic Function: Example 1

• The AskForAge() function does not have input
arguments, but it returns an integer value.

int AskForAge()

{

int age;

cout << "\n How old are you? ";

cin >> age;

return age;

}

Basic Function: Example 2

• The AskForName() function does not have any
input arguments. It only asks the user to enter the
name.
string AskForName()

{

string name;

cout << "\n What is your name? ";

getline(cin,name);

return name;

}

Basic Function: Example 3

• The Write function’s job is to write the user’s name and age to the screen.
• It doesn’t “return” anything, but the input parameter list has two data items.

void Write(string name, int age)

{

cout << "\n Hi “<< name << "! You are "

<< age << " years old. \n";

}

Basic Function: Example 4

Calling and Called Functions

• The terms calling function and called function are often used
when referring to functions.

• When one function (Function1) accesses another function
(Function2), it is said that Function1 calls Function2.

• That is, Function1 is the calling function and Function2 is the
called function.

• In order to invoke (make use of) the function, you’ll need to
have a statement that calls it.

• The call statement is the code located in the program where
the function is to be used or accessed.

• Depending on the requirements for the function (input list) and
return type—your function calls may vary in appearance.

//Write a greeting

WriteHello(); //call, no inputs, no return value

//Ask for the user's name

name = AskForName(); //call, returns name

//Ask for age

age = AskForAge(); //call, value assign into age

//Write information

Write(name, age); //call, pass name, age to Write

Function Call: Example

Requirements for Writing Functions

• Every function must have a

- function prototype/declaration

- function definition/body.
– The function prototype statement tells the compiler the

function name, and its return and input types.

– The function definition contains the actual code that
performs the function’s task.

• The first line of the function definition is the function
header. That line contains the return type, function
name, and input parameter list.

Concentrate on the Function First

• Concentrate on one function at a time.

• Work as if you can’t see other parts of the program.

• Each function is its own block of code, with its own
variables and control statements.

• Write the prototype, see if it can be called, then
write the function.

See how functions must be laid out in the source code file.

C++ HOTEL Example

Function Declaration/Prototype

• Before a function can be called, the calling function
must know about the called function.

• The prototype may be declared in the calling
function before the call. It can appear above the
calling function or it can appear in an include file.

• The important point is that the compiler must have
seen the function prototype before the function is
called.

• The form of the function prototype is:

return_type function_name(input param type

list);

• These statements must be seen before they are called.

• Example: 5 prototypes in the C++ Hotel program.

int HowManyPeople();

int HowManyNights();

string WhatTypeRoom();

float CalcCost(int people,int nights,

string roomType);

void WriteCostSummary(int people, int nights,

string roomType, float cost);

Function Declaration/Prototype (cont.)

return Statement

• The return statement serves three purposes in a C++ function.
– It is required when the function is returning a value to the calling

function.
– The return statement causes the program control to exit the

function and to return to the calling function.
– An expression may be evaluated within the parentheses format of

the return statement.

• The return statement is way to terminate the function and
return to the calling function at any point in the function
body.

• The return statement in CalcCost() can be written as:
totalCost = (rate + addPersonCost)* nights

return totalCost;

• OR it could be written like this:
return ((rate + addPersonCost)* nights);

• The function WriteGreeting() does not return a
value to the calling function, so no return statement
is required:
void WriteGreeting()

{

cout << "\n Welcome to the C++”

<< “ Hotel Rate Program"

<< "\n we offer a fine hotel on” << “

the beach. \n";

}

return Statement (cont.)

Function Calls

• The call statement is the C++ statement where the called
function is accessed.

• When a function is called, control is passed to the called
function, and the statements inside that function are
performed.

• Control is returned to the calling function when the function
tasks are completed.

• The function calls in the C++ Hotel program are:
numPeople = HowManyPeople();

numNights = HowManyNights();

roomType = WhatTypeRoom();

totalCost = CalcCost(numPeople, numNights,

roomType);

WriteCostSummary(numPeople, numNights,

roomType, totalCost);

Types of Function Calls

• When a function does not have any inputs, nor does
it return anything to the calling function, the call
statement is very simple.

• The WriteGreeting() function is like this, and
must be called like so:

WriteGreeting();

No Inputs and No Return Value

• When a function does not have any inputs, but it does return a
value, you have to be sure the call statement has an assign
operator so that the returned value is placed in a variable.

• Note how the input list parentheses are empty, but the return
values are each assigned to one of main’s variables.

numPeople = HowManyPeople();

numNights = HowManyNights();

roomType = WhatTypeRoom();

No Inputs but has a Return Value

Types of Function Calls (cont.)

• When a calling function must pass information to the
called function, but the function doesn’t return
anything, the call statement does not have an assign
operator.

• When this program writes the resultant cost
summary to the screen, this task is done by the
WriteCostSummary() function. The function
doesn’t return any value to us.
WriteCostSummary(numPeople, numNights,

roomType,totalCost);

Input and No Return Values

Types of Function Calls (cont.)

• When a calling function must pass information to the
called function, and that function returns a value to
us, we need be have an assign statement to obtain
that value.

• Here is the call to CalcCost(), which returns to us
the total cost of the stay.

totalCost = CalcCost(numPeople, numNights,

roomType);

Input and Return Values

Types of Function Calls (cont.)

Passing Values to Function

 Pass by Value:

 Only pass the value (not the variable) to the
parameter in the function.

 The variable’s value in main()does not change.

 The value is copied into the parameter of the function

 Pass by reference:

 Ask the parameter in the function to refer to the
variable in main().

 Written with ampersand (&) in the function’s
parameter.

Pass by Value

Functions have their own copies of the variables.
These variables are referred to as local variables.

Standard Library Function (cont.)

 Exist in the standard libraries in C++

 Need to include the standard library (where function is located)
#include <libraryname>

 Example: To use function named pow to calculate 2³ (function pow is
located in the standard library math.h)

#include<iostream>

#include<math>

using namespace std;

int main ()

{

double result;

result = pow(2,3); //2^3

cout << “2 to the power of 3 is” << result;

return 0;

}

Standard Library Function (cont.)

Function Parameters Example Answer Decription

pow 2 double pow (2,3); 8 2 to the power
of 3 equals to 8

sqrt 1 double sqrt (25); 5 Square root of
25 is 5

cos 1 double cos (0); 1 Cosine for 0 is
1

sin 1 double sin (0); 0 Sine for 0 is 0

tan 1 double tan (0) 0 Tangent for 0 is
0

 Example of Standard Library: math.h contains functions to
compute common mathematical operations and transformations

 http://www.cplusplus.com/reference/cmath/

http://www.cplusplus.com/reference/cmath/

Common Errors With Functions

Compiler Error: function does not take __ parameters.

The function prototype and call statements do not match in the input lists.

Link Error: unresolved external: void _decl
Write(class string, int age)

The prototype, call statement and function header lines have to match.

Compile Error: missing function header
(old-style formal list?)

Leaving the semi-colon on the function header line generates this error.

Summary

• A function has a name, a list of parameters (which may be empty), and a
result type (which may be void).

• Callers communicate information to a function via its parameters (also
known as arguments)

• Callers must pass the correct number and types of parameters that the
function expects.

• If a function is declared to return a value, it must execute a return statement
with a value of the declared return type.

• C++ standard library provides a collection of routines that can be
incorporated into the codes that you write.

• The function is a standard unit of reuse in C++

• When faced with the choice of using a standard library function or user
defined function to solve the same problem, choose the library function. The
standard function will be tested thoroughly, well documented, and likely
more efficient.

