
BTE2313

Chapter 6: CONTROL STRUCTURES

Repetition/Looping

by

Sulastri Abdul Manap
Faculty of Engineering Technology

sulastri@ump.edu.my

For updated version, please click on

http://ocw.ump.edu.my

mailto:sulastri@ump.edu.my
http://ocw.ump.edu.my/

• There are 3 commands in C++ that are used to create loops:

 for : implements a set of instructions for a definite number
of times

 while : re-iterates a set of instructions from 0 to several
times, providing that the given condition is true

 do..while : implements a set of instructions at lease
ONCE, and then from 0 to several times, providing that the
given condition is true.

Repetition/Looping

• This statements is used when the number of repetition
is known beforehand by the programmer.

• As an example, the following codes are used to print a
message “Hello world”, a hundred times. Variable
count used as the loop control variable (LCV).

for Statement

for (counter=1; counter<=100; counter++)
cout <<“Hello world.”<<endl;

• The system will:

a) Set the value of variable counter to 1

b) Check the value of counter

c) Exit from the repetition structure if the value of
variable counter is bigger than or equal to 100

d) Execute the output statement if the value of
variable counter is less than or equal to 100;

e) Increase the value of variable count by 1

f) Go to step b

for Statement (cont.)

for Statement (cont.)

for Statement (cont.)

• Syntax of the for statement:

for (<A>; ; <C>)

{

// Statement to be executed in a loop

}

Note:

<A> is a statement to initialize the value of the LCV;

 is a logical expression that causes the loop to be
terminated and contains the LCV

<C> is a statement to increase/decrease the value of the LCV

for Statement (cont.)

for Statement (cont.)

• Example 1: To display the sum of number from 50 to
55.

sum = 0;

for (num=50; num <=55; num++)

{

sum +=num;

}

cout <<“Sum of numbers from 50 to 55 is” <<sum;

for Statement (cont.)

• Example 2: To display the sum and average of thirty
marks, which are keyed in by the user

sum=0;

cout<<“Enter 10 marks”;

for (count=1; count<=10; count++)

{

cin>>num;

sum+=num;

}

cout<< “The summation of marks is” << sum <<endl;

cout<< “The calculated average is” << sum/10.0;

Try with counter
keyed in by user.

• Used when it is not clear how many times a
statement or a block of statements will be
executed.

• A while loop can be:

 Counter-controlled

 Sentinel-controlled

• Sentinel value (a value to stop the execution
of loop) is keyed in to end the loops.
Example:-1

while Statement

Syntax of the while statement:

<A>
while

{

//statement to be repeated <C>

}

Note:

<A> is a statement to initialize the value of the LCV;

 is a logical expression that causes the loop to be terminated
and contains the LCV

<C> is a statement to increase/decrease the value of the LCV

while Statement (cont.)

while Statement (cont.)

• When number of times of the statements that
need to be repeated is known definitely

• Structure:

Counter-Controlled while Statement

• Example

Counter-Controlled while Statement

float marks, sum=0;

counter=1;

cout << “Enter 5 marks”;

while (counter<=5)

{

cin >> marks;

sum += marks;

counter++;

}

cout << “summation of marks:” << sum <<endl;

cout << “the average is” << sum/10;

Counter-Controlled while Statement

• Sentinel variable is tested in the condition, and the
repetition ends when the sentinel value is encountered

• Structure:

Sentinel-Controlled while Statement

• Example

Sentinel-Controlled while Statement

float sum=0;

float num;

int count=0;

cout << “Enter numbers to be summed (type -1 to end).”;

cin >> num;

while (num != -1)

{

sum += num;

count++;

cin >> num;

}

cout << “The sum of marks is” << sum <<endl;

cout << “The average is” << sum/count;

do…while Statement

• The loop-continuation at the end of the loop, so the body
of the loop will be executed at least once. Similar with
while structure.

do

{

// Statement to be repeated <C>

} while ();

Note:

 is a logical expression that causes the loop to be terminated and
contains the LCV

<C> is a statement to change the value LCV

do…while Statement (cont.)

do…while Statement (cont.)

• Example:
#include <iostream>

using namespace std;

int main()

{

float input;

cout << "Please enter a number between 0-20: ";

// values must be in the range 0...20

do

{

cin >> input;

} while (input < 0 || input > 20);

// input at this point is assured to be within range

cout << “Valid number keyed in was " << in_value << endl;

}

• If number of iterations is known beforehand, use
for loop

• If number of iterations is not known beforehand,
and it could be zero, use a while loop

• If number of iterations is not known beforehand,
and it is certain the command must be done at
least once, use a do...while loop

How to choose the right looping?

break and continue Statement

• break and continue statements are used to alter the
flow of control structure

• break is used for two conditions:

 To quit prematurely from a loop, where it is able to
exclude certain variables.

To skip the remains of a switch structure

• continue is utilized in while, for, and do…while
structures

 skips remaining statements and proceeds with the
next iteration of the loop

break Example

#include <iostream>

int main()

{

int y;

for (y=1; y<=10; y++)

{

if (y==6)

break; //stop loop if y==6

cout << y << “”;

}

cout << endl << “out of loop at y==” << y <<endl;

return 0;

}

How the output
looks like?

continue Example

How the output
looks like?

#include <iostream>

int main()

{

for (int y=1; y<=10; y++)

{

if (y==5 || y==8)

continue; //skip remaining code in loop if y==5

cout << y << “ “;

}

cout << endl << “continue to skip displaying the value 5” << endl;

return 0;

}

Nested Loop

• A loop can be put/nested within another loop.

• Example: To create the following pattern;
*

**

• Codes:
for (i = 0; i <= 4 ; i++)

{

for (j = 0; j <= i; j++)

cout << "*";

cout << endl;

}

Nested Loop (cont.)

• Determine the result if the first for
statement is replaced with this?

for (i = 4; i >= 0; i--)

