
BTE2313

Chapter 6: CONTROL

STRUCTURES (SELECTION)

by

Sulastri Abdul Manap
Faculty of Engineering Technology

sulastri@ump.edu.my

For updated version, please click on

http://ocw.ump.edu.my

mailto:sulastri@ump.edu.my
http://ocw.ump.edu.my/

Objectives

• In this chapter, you will learn about:

1) Flow of control in single and nested if statements given
the flow chart

2) Conditional expressions

3) Decision/Selection program structure

4) Repetition/Looping program structure

Introduction

• A computer’s pattern of executions are:

1) Sequence (execute from first to last instruction, from
top to bottom)

2) Decision/Selection: making a choice which block of
instructions to be executed

3) Repetition/Looping: repeat a set of instructions

4) Branch to a separate group of instructions and return
(or function calling)

• Any program - no matter how complex - can be written
with just the first three patterns: sequence, repetition,
decision.

• Branch and return has real advantages in complex
programs

Flow Chart
• Any algorithm or process in computer programming can be represented

graphically by using Flow chart.

• A flow chart may consists of rectangles, diamonds, ovals, small circles and
their flow is represented by arrows.

Flow Chart (cont.)

Conditional Expressions

• Both repetition/looping and decision/selection
statements depend on a conditional expressions
(logical expressions either true or false)

• Usually uses relational operators:

== equality

!= not equal

> greater than

< less than

>= greater than or equal

<= less than or equal

!> not greater than

!< not less than

Examples:
(sum == 0)
(i < 10)
(salary != 0.0)

• Allows the program to execute one or another set of
instructions

 if : a single-selection structure will select or sometimes
ignore a single process/action.

 if-else: a double-selection structure that selects
among two different processes/actions.

 switch-case: a multiple-selection structure which
selects among several different actions.

Decisions/Selections

• Used to select or ignore a single action.

• Example: a passing mark on a mid-term test is 60.

if Selection Structure

Mark>=60 Print “Passed”
true

false

if (mark >= 60)
cout << “Passed” << endl;

• if...else statements allow the programmer to select
between two different actions

• The syntax for a simple if-else statement is:

if-else Selection Structure

if (condition)
statement for condition is true;

else
statement for condition is false;

• Example: if student’s mark is bigger than or equal to 60,
display “Passed”. Otherwise, display “Failed”

if-else Selection Structure (cont.)

if (mark >=60)
cout << “Passed” << endl;

else
cout << “Failed” << endl;

Mark>=
60

Print
“Passed”

truefalsePrint
“Failed”

• If there are more than one statement in the body
of if-else, put the statements in between curly
brackets/braces { and }

• A sequence of statements between curly
brackets/braces is called a compound statement.

• Example:

if-else Selection Structure (cont.)

if (mark >=60)
cout << “Passed.” << endl;

else
{

cout << “Failed.” << endl;
cout << “See you again next semester.” << endl;

}

• Test for multiple cases by placing if-else

structures inside if-else structures.

• Example:

Nested if-else Structure

If student’s mark is bigger than or equal to 80
Display “A”

else
If student’s mark is bigger than or equal to 70

Display “B”
else

If student’s mark is bigger than or equal to 60
Display “C”
else
If student’s mark is bigger than or equal to 50

Display “D”
else

Display “F”

How its flow
chart looks
like??

Nested if-else Structure (cont.)

if (mark >= 80)

cout <<“A” << endl;

else if (mark >= 70)

cout <<“B” << endl;

else if (mark >= 70)

cout <<“C” << endl;

else if (mark >= 50)

cout <<“D” << endl;

else

cout <<“F” << endl;

If the mark is bigger than or equal

to 80, all 4 conditions from the
top are true, but only ONE cout

statement will be executed,

which is the first statement. Once

that statement is being

executed, the rest of statements

will be skipped.

Nested if Structure

A
YesYes

B

Condition 1
True?

C

No No

Condition 2
True?

• Involves more than one condition.

• Once the first condition is true, the second
condition is checked.

Nested if Structure (cont.)

• Example:
if (Gender ==‘M’)
if (Age < 18)

cout << “Young man”;

YesYesGender=
’M’?

No No

Age<18?

Start

“Young
Man”

End

What if you have too
many conditions to
check??

• Provides a convenient alternative
to nested if-else

• Switch (integral) expression is
evaluated first

• Result from the expression
determines which action will be
taken

switch-case Structure

• The expression inside the () after the word switch
must have an integral value.

• switch statement body must be placed
between curly brackets/braces { }

• After each case word, it must be followed by an
integral constant value and a colon (:)

• If there is a case that is matched, the
statements after that will be executed, until it
came upon a break statement.

switch-case Structure (cont.)

• the following if-else statement can be easily
converted to a comparable switch statement:

switch-case Structure (cont.)

• Now consider the following if-else statement:

• The above code is impossible to be translated into a
switch..case statement.

• A variable (in this case y) cannot be taken as a case label.

• The second case checks for an inequality, rather than an
exact match, hence it is impossible to translate to a case.

switch-case Structure (cont.)

