
BTE2313

Chapter 4: Input and output

by

Sulastri Abdul Manap
Faculty of Engineering Technology

sulastri@ump.edu.my

For updated version, please click on

http://ocw.ump.edu.my

mailto:sulastri@ump.edu.my
http://ocw.ump.edu.my/

Objectives

• In this chapter, you will learn about:

1) Learn about input and output statements (cin and cout)

2) Learn how to process the input into output

Introduction: Input Output

• C++ treats input and output as a stream of characters.

• The keywords for input and output operations are
stored in the standard library called iostream:

#include <iostream>

using namespace std;

• cin  default input stream

• cout  default output stream

• Use cin with >> , known as extraction operator

• Use cout with <<, known as insertion operator

Output: cout

• cout command is used to indicate an output stream
that will be displayed on the screen (output device)

• The insertion operator takes 2 operands (cout and
“what to be displayed”)

• Operand on the left is a stream expression (i.e. cout).

• Operand on the right is an expression or a string
constant.

Output Statements

SYNTAX

cout statements can be linked together using << operator.

Examples below will produce same output:

cout << “Three multiply by five is “ ;

cout << 3 * 5 ;

cout <<“Three multiply by five is “<< 3 * 5 ;

cout << Expression << Expression . . . ;

Output Statements: String constants

• String constants (in double quotes) are to be printed as
is, without the quotes:
cout<<“Please enter the number of books ”;

OUTPUT: Please enter the number of books

• “Please enter the number of books” is called a prompt.

• All user inputs must be preceded by a prompt to tell
the user what is expected.

• You must insert spaces inside the quotes if you want
them in the output.

Output Statements: Expression

• All expressions are computed and then
outputted.

• Example 1:
cout << “The answer is ” << 3 * 4 ;

OUTPUT: The answer is 12

• Example 2:
int x = 10, y = 12, z;

z = x * y;

cout << “The answer is ” << z;

OUTPUT: The answer is 120

Output: Escape Sequences

• In C++, there are techniques can be applied in
order to place cursor before or any characters,
using an escape sequence (a backslash \

followed by a character)

• Example:
cout << "\nhai!";//go to new line, and print hai!

cout << "hai!\n";//print hai!, then new line

cout << "ha\ni";//print ha, then i! on new line

Output: Newline

• cout<<“\n” and cout<<endl both are
used to insert a blank line.

• Advances the cursor to the start of the next line
rather than to the next space.

• Always end the output of all programs with this
statement.

• If you there is no endl or \n, all output will
displayed on the same line

Example: Escape Seq.

#include <iostream>

#include <string>

using namespace std;

int main()

{

cout << “1. ” << “Hello there!\n”;

cout << “2. ” << “Hello\t there!” << endl;

cout << “3. ” << “Hello\n there!\n”;

cout << “4. ” << “Hello\t\t there!\n”;

cout << “5. ” << “Hello there!\a\a\a\a”;

return 0;

}

Output: Formatted Numeric

 Allows the user to control output attributes such as:

 field width (setw, the number of display column
that the number takes place)

 decimal point precision (setprecision, number
of decimal places

 number of significant figures

 Must include #include <iomanip>

11

Output: Formatted Numeric (cont.)

 setw (size)

 sets a MINIMUM width

 size must be an integer value

 number of significant figures

 Example:
int num1 = 1234;

int num2 = 56789;

cout << setw(6) << num1; // _ _ 1 2 3 4

cout << setw(6) << num1 << setw(6) << num2; //_ _ 1 2 3 4 _ 5 6 7 8 9

12

 setprecision (num)

 num must be an integer value

 the value is rounded up when it is displayed

 the precision stays set until it is changed

 Example:
double val = 123.456;

cout << setprecision(5) << val; //123.46

13

Output: Formatted Numeric (cont.)

 Floating point format:

 fixed: print with a fixed number of digits after
the decimal point

 scientific: print in scientific notation

 Example:
double y = 50.0512;

cout << fixed << setprecision(2) << y; //50.05

cout << scientific << setprecision(2) << y; //50.05

14

Output: Formatted Numeric (cont.)

Input: cin

• cin command is used to indicate an input stream
from the keyboard (input device)

• The extraction operator >> takes 2 operands (cin
and “where to be stored”)

• Operand on the left is a stream expression (i.e. cin).

• Operand on the right is a variable

Input: Statements

SYNTAX

cin statements can be linked together using >> operator.

Examples below will produce same output:

cin >> x;

cin >> y;

cin >> x >> y;

cin >> Variable >> Variable . . . ;

How cin works?

• Input is not entered until user presses
<ENTER> key.

• Allows backspacing to correct.

• Skips whitespaces (space, tabs, etc.)

• Multiple inputs are stored in the order
entered:

cin >> num1 >> num2;

User inputs: 3 4

Assigns num1 = 3 and num2 = 4

How cin works? (cont.)

• Leading blanks for numbers are ignored.

• If the type is double, it will convert integer
to double.

• Keeps reading until blank or <ENTER>.

• Remember to prompt for inputs

Input: getline

 The getline function allows us to input characters into
a string object

 We can read whole lines of input using:
getline (cin, string_name);

 Example
string username;

cout << “Please key in your name: ”;

getline (cin, username);

19

Write a program based on the following pseudocode:

print “Exercise for ‘cin’ and ‘cout’”

print “Enter an integer number:”

read int_number

print “Enter a floating point number:”

read float_number

print “Enter a character:”

read aChar

print “Enter double number:”

read double_number

print int_number, float_number, aChar, double_number

Exercise #1: Input Output

Exercise #2: Input Output

Get 3 integer numbers from user, and calculate the average!

