
BTE2313

Chapter 1: Introduction to Computers

and Programming

by

Sulastri Abdul Manap
Faculty of Engineering Technology

sulastri@ump.edu.my

For updated version, please click on

http://ocw.ump.edu.my

mailto:sulastri@ump.edu.my
http://ocw.ump.edu.my/

Learning Outcomes

 To understand computer sciences: basic concepts

 To be aware of different types of programming
languages

 To apprehend the C++ program development
environment

 To familiarize with the IDE (Integrated Development
Environment) for computer programming

Introduction

• C++ : a computer programming language that’s widely used
by technically oriented people with or without programming
experience, and for skilled programmers to use in
developing information systems.

• Instructions in commanding computers are written/coded to
perform tasks.

• Software is known as the instructions or commands you
write to control hardware

Hardware and Software

 Computers can carry out calculations and make logical
decisions faster than human being can.

 Computer process data by implementing set of control
instructions called computer programs.

 These computer programs, guide the computer through
orderly sets of actions indicated by computer programmers.

Images source: Wikipedia

• The programs that run on a computer are known as
software.

– (e.g., Operating system, System utility software,
Application software).

• A computer, physically consists of a number of devices
referred to as hardware

– (e.g., hard disks, mouse, LCD screen/monitor, keyboard,
memory, optical drives and central processing units CPU).

Hardware and Software (cont.)

Computer Architecture

Network
device

Storage
device

Computer Organization

 Input Device: receives information (processed in ‘receiving’
section)

 Output Device: delivers the processed information to be used
outside the computer (processed in ‘shipping’ section)

 Memory unit: Remembers information that has been entered
into input unit (‘warehouse’ section of a computer)

 Central Processing Unit (CPU): brain of the computer
(‘administrator’ of a computer).

Programming language

• Computer programmers may write commands or

instructions in various programming languages

• Some of the languages are easily comprehensible

by computers, while others require translation

steps in between

• Three general types of programming languages:

– Machine languages

– Assembly languages

– High-level languages

Programming language (cont.)

Machine Languages

• A computer can understand directly ONLY its own machine
language, which is defined by its hardware architecture.

• Machine languages usually consist of 1s and 0s, which
makes them difficult for human to understand.

Assembly Languages

• Operations are represented by abbreviations in English, that
form the basis of assembly languages.

• A translator is used to convert assembly language into
machine language. It is called an assembler.

Programming language (cont.)

High-Level Languages

• To make the programming process faster, High-level
languages were developed. This type of language will
enable programmer to accomplish extensive tasks only by
one statement/instruction.

• A translator is used to transform high-level language
programs to machine code/language. It is called a
compiler.

• This type of language allow programmers to write
commands/codes that look like ordinary English and
contain frequently used mathematical expressions.

Programming language (cont.)

Programming Language

Low Level Language
High Level

Language

Machine Language Assembly Language

00000000

00010101

00010110

00110101

01110111

CLR

ADD

SUB

SFT

DC

Fortran Scientific programming

COBOL Business data processing

C System programming

Ada Real-time distributed systems

BASIC

Prolog

Lisp

C++

C#

History of C++

 Dennis Ritchie created C at Bell Telephone Laboratories in
early 1970s.

 C exists from the difficulties of programming language
(assembly language) for Unix OS.

 C++, is an extension of C that is developed at Bell Laboratories
by Bjarne Stroustrup in the early 1980s.

 C++ exists from the enhancement of C with data abstraction
and object-oriented.

C++ Language

 C++ language facilitates computer-program design in
a structured and disciplined approach.

 C++ is an extension of the C programming language
(as a superset of C)

 Some C++ is not C, but ALL C code is C++ code!

• A typical six stages of C++ environments: editing source code,

preprocessor, compiling, linking, loading and executing.

A typical C++ Environment

A typical C++ Environment (cont.)

• Step 1: edit source code/program file with an
editor program.
– File names for a C++ source code end with the .cpp,
.cxx, .cc or .C extensions

– What type of editor??

• integrated development environments (IDEs)
– support the software-development process, from

editors for writing/editing codes and
compilers/debuggers to locate logic error (errors that
cause programs to perform incorrectly)

– Popular IDEs:

Code Blocks, Dev C++, CodeLite, Microsoft® Visual
Studio, Express Edition, NetBeans etc.

A typical C++ Environment (cont.)

• Step 2 and 3: compile the program.
– Before the compiler’s translation process begins,

preprocessor program executes automatically (so we
call preprocessing Step 2 and compiling Step 3).

– Certain manipulations are to be performed on the
program before compilation. This will be done in Step 2
where the C++ preprocessor comply with preprocessing
directives.

– Usually the manipulations consists of performing
various text replacements, and including other text files
to be compiled

– In Step 3, the compiler translates the C++ codes into
machine-language code (also known as object code
where new file with extension .obj is automatically
created)

A typical C++ Environment (cont.)

• Step 4: linking
– A linker links the produced object code with other object

codes and libraries specified, to produce an executable
program ()

– A new file will be produced with file extension of .exe if the
program compiles and links correctly.

• Step 5: loading.
– Memory will be used to store the program before it can be

executed

– A loader will take the executable image from disk and
transfers it to memory.

• Step 6: Execution
– The program will be executed by its CPU, one instruction at a

time.

