

BIO & PHARMA ANALYTICAL TECHNIQUES

Chapter 4 Chromatography

by Dr. Siti Umairah Mokhtar Faculty of Engineering Technology umairah@ump.edu.my

Chapter Description

Aims

 Discuss theory, principles and application of analytical techniques used in material characterisation, pre-formulation development, manufacturing process and storage stability.

Expected Outcomes

- Explain general facts of chromatography including application in other field.
- Illustrate theory and principle of chromatography: Thin Layer Chromatography (TLC) and High Pressure Liquid.
- Discuss on the application of both instruments in pharmaceutical.

References

- Gunzler H. & Williams A. (2002). Handbook of Analytical Techniques. Wiley-VCH, Weinheim, Germany.
- Mullertz, A., Perrie, Y. and Rades, T. (2016) Analytical Techniques in the Pharmaceutical Sciences (Advances in Delivery Science and Technology). Springer, United States.

What is CHROMATOGRAPHY

to write

colour

Laboratory technique for the separation of mixtures

What is CHROMATOGRAPHY

A technique for separating mixtures into their components in order to analyze, identify, and purify the mixture or components.

DEFINITION

- Analyze : To <u>examine the mixture</u> or structure or something especially by separating it into its parts.
- Purify : To make something <u>pure</u> by removing substances that are not wanted out of another substances that contains it.
- Identify : To recognize something and to determine the identity of mixture.

Chromatogram

 The visual output of the chromatograph. Different peaks/patterns on the chromatogram correspond to different components of the separated mixture

CHROMATOGRAM

RETENTION TIME:

Time takes for a particular analyte to travel through the system (from inlet to detector) under set conditions.

Fixed in place either in a column (GC, HPLC) or on a planar surface (TLC)

Carries the analyte through the stationary phase

Principles of Chromatography

- Physical method of separation that distributes components to separate between 2 phases moves in a definite direction.
- Substances are separated based on their differential distribution between 2 phases
- Substances will move with the mobile phase at different rate depending upon their partition or distribution coefficients.

Applications of Chromatography

- 1. Pharmaceutical industry
- 2. Forensic
- 3. Research
- 4. Medicine
- 5. Food
- 6. Environment

Types of Chromatography

- Paper chromatography
- Column chromatography
- Thin Layer Chromatography (TLC)
- High Performance Liquid Chromatography (HPLC)
- Gas Chromatography (GC)

Thin Layer Chromatography (TLC)

Introduction to TLC

- TLC is one of the simplest, fastest, easiest and least expensive of several chromatographic techniques used in qualitative and quantitative analysis to <u>separate organic compounds</u> and <u>to test the</u> <u>purity of compounds</u>.
- Consists of:
 - A stationary phase (S/P) a plate or strip coated with a form of silica gel/alumina/cellulose
 - A mobile phase (M/P) developing liquid which travels up the stationary phase, carrying the samples with it (volatile organic solvent).
 - Analysis is performed on a flat surface under atmospheric pressure and room temperature.

PRINCIPLE OF TLC

- It is based on the principle of <u>adsorption chromatography</u> or <u>partition chromatography</u> or combination of both, depending on adsorbent, its treatment and nature of solvents employed
- The component with more affinity towards the S/P travel slower
- The component with lesser affinity towards the S/P travel faster.
- Components of the samples will separate on the S/P according to:

 \rightarrow How much they adsorb on the S/P vs how much they dissolve in the M/P

Adsorption Chromatography

- Ability of different solutes to be adsorbed on the surface of the stationary phase at different strength.
- S/P: a solid.
- Separation is due to a series of adsorption/desorption steps.

Partition Chromatography

Separation is based on solute partitioning between 2 liquid phases.

- TLC plate (aluminium or glass) coated by stationary phase (silica gel, alumina or cellulose).
- Coated material: 0.1 0.3 mm in thickness
- Fluorescent indicator will make it florescence during the UV light exposure

Steps Involved in TLC

By Quantockgoblin http://commons.wikimedia.org

In TLC, the results are represented by R_f value which represent the movement or migration of solute relative to the solvent front. This is indicating position of migrated spots on chromatogram.

The R_f value is calculated as:-

R_fvalue =

Distance travelled by solute Distance travelled by solvent front

Calculate the R_f values:

 The R_f value is calculated by measuring the distance the sample zone travels divided by the distance the developing solvent travels

✓ Values < 0.1 is considered poor: the spots are too close to origin</p>

✓ Values of 0.1 to 0.8 are good and any other spots (impurities) or other actives are resolved form each other

> 0.8 = poor; spots may be too broad or distorted

Factors affecting R_f value

- It depends on following factors:
- Nature adsorbent
- Mobile phase
- > Activity
- Thickness of layer
- > Temperature
- ➤ Equilibrium
- ➤ Loading
- Dipping zone

Applications in Pharmaceuticals

- 1) Separation of mixture of drug of chemical, biological, plant origin.
- 2) Separation of Carbohydrates, vitamin, antibiotics, proteins, etc.
- 3) Identification of drug. Ex : Amoxicillin, Levodopa
- 4) Detection of foreign substances.
- 5) To detect the decomposition products of drug.
- 6) To determine how many compounds in the mixture is it real pure?

Advantages of TLC

► Low cost Short analysis time >All spots can be visualized Adaptable to most pharmaceuticals ► Low cost Uses small quantities of solvent >Requires minimal training ➢ Reliable and quick Minimum amount of equipment is needed

High Performance Liquid Chromatography (HPLC)

Introduction

- HPLC is a chromatographic technique that can separate a mixtures of compounds
- It is used to identify, quantify and purify the individual components of a mixture.
- HPLC is a type of liquid chromatography where the sample is forced through a column that is packed with a stationary phase composed of irregularly or spherically shaped particles, a porous monolithic layer, or a porous membrane by a liquid (mobile phase) at high pressure.

Principle of HPLC

Adsorption Chromatography

- The principle of separation is adsorption.
- Separation of compounds takes place based on the difference in the affinity of the compounds towards stationary phase.
- The lesser the affinity of the sample particles towards the stationary phase the faster the time of elution of the sample.

Partition Chromatography

- Stationary phase is a liquid which is coated on the solid support on the column.
- The mobile phase is also a liquid.
- When solute along with the mobile phase is passed over the stationary phase it gets dissolved to the surface of the liquid coated to the solid support.
- The compounds which have more partition co-efficient are eluted slowly (interaction) when compared to the compounds with low partition co-efficient.

HPLC

- the injection of a small volume of liquid sample into a tube packed with tiny particles (3 to 5 micron (µm) in diameter called the stationary phase) where individual components of the sample are moved down the packed tube (column) with a liquid (mobile phase) forced through the column by high pressure delivered by a pump.
- These components are separated from one another by the column packing that involves various chemical and/or physical interactions between their molecules and the packing particles.
 - These separated components are detected at the exit of this tube (column) by a flow-through device (detector) that measures their amount. An output from this detector is called a "liquid chromatogram".

Types of HPLC

	Stationary phase	Mobile phase
Normal Phase	Polar	Non-polar
Chromatography	(hydrophilic)	(hydrophobic)
Reverse Phase	Non-polar	Polar
Chromatography	(hydrophobic)	(hydrophilic)

- Most common used

Schematic diagram of HPLC

SA

INSTRUMENTATION OF HPLC

- 1. Solvent storage bottle
- 2. Gradient controller and mixing unit
- 3. De-gassing of solvents
- 4. Pump
- 5. Pressure gauge
- 6. Pre-column
- 7. Injector
- 8. Column
- 9. Detector
- 10. Recorder
- (data collection)

- The role of the pump is to force a liquid (called the mobile phase) through the liquid chromatograph at a specific flow rate, expressed in milliliters per min (mL /min).
- ✤ Normal flow rates in HPLC are in the 1-to 2-mL/min range.
- Typical pumps can reach pressures in the range of 6000-9000 psi.
- During the chromatographic experiment, a pump can deliver a constant mobile phase composition (isocratic) or an increasing mobile phase composition (gradient).

Injectors

Injectors are used to provide <u>constant volume injection of sample</u> into the mobile phase stream. Inertness and reproducibility of injection are necessary to maintain high level of accuracy.

- Divide:
 - Manual Injector
 - Auto injector automatic operation

By Arlen http://commons.wikimedia.org

Mobile Phase

- Mobile phase serves to transport the sample to the system.
- Essential criteria of mobile phase are inertness to the sample components.
- Pure solvents or buffer combinations are commonly used.
- The mobile phase should be free of particulate impurities and degassed before use.

Column

A column is a stainless steel tube packed with stationary phase.

□ It is a vital component and should be maintained properly as per supplier instructions for getting reproducibility and separation efficiency run after run.

By Imgupl http://commons.wikimedia.org

Detectors

- A detector gives specific response for the components separated by the column and also provides the required sensitivity.
- It has to be independent of any changes in mobile phase composition.
- Majority of the applications require UV-VIS detection, though detectors based on other detection technique are also popular these days.

Detectors

- Absorbance (UV/Vis or PDA)
- Refractive index (detects the change in turbidity)
- Fluorescence (if the analyte is fluorescent)
- Electrochemical (measures current flowing through a pair of electrodes, on which a potential difference is imposed, due to oxidation or reduction of solute)
- Conductivity (for ions)
- Light scattering
- Mass spectrometry (HPLC-MS)

Detectors	Type of compounds can be detected	
UV-Vis & PDA	Compounds with chromophores, such as aromatic rings or multiple alternating double bonds.	
RF	Fluorescent compounds, usually with fused rings or highly conjugated planar system.	
CDD	Charged compounds, such as inorganic ions and organic acid.	
ECD	For easily oxidized compounds like quinones or amines.	

Pharmaceuticals:

- Tablet dissolution of pharmaceutical dosages
- Shelf life determinations of pharmaceutical products
- Identification of counterfeit drug products
- Pharmaceutical quality
- control

Environmental:

- Phenols in drinking water
- Estrogens in coastal waters the sewage source
- Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria

APPLICATIONS OF HPLC

Forensics:

- Determination of cocaine and metabolites in meconium
- Simultaneous quantification of psychotherapeutic drugs in human plasma

Food:

- Ensuring soft drink consistency and quality
- Analysis of vicinal diketones in beer
- Sugar analysis in fruit juices

hp?id=611

Advantages of HPLC

- Separations fast and efficient (high resolution power)
- Continuous monitoring of the column effluent
- It can be applied to the separation and analysis of very complex mixtures
- Accurate quantitative measurements
- Repetitive and reproducible analysis using the same column
- Both aqueous and non aqueous samples can be analysed with little or no sample pretreatment
- A variety of solvents and column packing are available, providing a high degree of selectivity for specific analyses.
- It provides a means for determination of multiple components in a single analysis.

Conclusion of The Chapter

- 1. Chromatography is really important in pharmaceutical industry especially in quality control department.
- 2. Moreover, it is also play a role in forensic science and research area.
- 3. TLC is the most simplest technique in chromatography while HPLC gives the more accurate results as compared to TLC.

Any Question?

Please refer to: Dr. Siti Umairah Mokhtar umairah@ump.edu.my

