For updated version, please click on http://ocw.ump.edu.my

NUMERICAL METHODS & OPTIMISATION

Project I

Raihana Edros Faculty of Engineering Technology <u>rzahirah@ump.edu.my</u>

Project I By Raihana Edros http://ocw.ump.edu.my/course/view.php?id= 608¬ifyeditingon=1

Communitising Technology

Chapter Description

- Aims
 - Apply numerical methods in solving engineering problem and optimisation
 - Defend ideas to solve the engineering problems using numerical methods
- Expected Outcomes
 - Propose an engineering problem from different engineering field
 - Select the best numerical method to solve the problem
 - Defend the numerical solution of the engineering problem
- References
 - Steven C. Chapra and Raymond P. Canale (2009), Numerical Methods for Engineers, McGraw-Hill, 6th Edition

Project I By Raihana Edros http://ocw.ump.edu.my/course/view.php?id= 608¬ifyeditingon=1 Communitising Technology

Project Milestone

- Week 9 : Distribution of Project Guidelines and selection of Problem (Part 1)
- Week 10 : Presentation 1
- Week 11-14 : Problem solving using manual calculation & MATLAB (Programming)
- Week 15 : Presentation 2 & Submission of Part 1 and 2

Project I By Raihana Edros http://ocw.ump.edu.my/course/view.php?id= 608¬ifyeditingon=1

Part I: Selection of Problems (25 marks)

- Each group should decide the methods in KALAM by Week 5
 - Chapter 4: Golden Section Search, Quadratic Interpolation, Newton's Method
 - Chapter 5: Linear Regression, Polynomial Regression, Langrange Interpolating Polynomials, Spline Interpolation
- Only two groups are allowed for each Method
- Students are expected to provide the following details in the project:
 - Detailed description about the problem to be solved (15 marks)
 - Marks are given based on the complexity of the problem. More marks will be given for more complex problem.
 - The application of MATLAB in solving the problem (10 marks)
 - Flow chart must be used to visualize the plan of problem solution

Project I By Raihana Edros http://ocw.ump.edu.my/course/view.php?id= 608¬ifyeditingon=1

Part 2: Supervision (5 marks)

- Each group should spend minimum of 1 hour with the course instructor from Week 6 Week 9.
- This will carry a total of **5 marks**.
- The meeting could be done in stepwise manner,
 - e.g. 20 mins every meeting, for 3 times or 2 times of 30 mins meeting, depending on the needs of students to seek advice from the course instructor.

Date	Duration	Marks	Instructor's signature

Project I By Raihana Edros http://ocw.ump.edu.my/course/view.php?id= 608¬ifyeditingon=1

Part 3: Presentation (10 marks)

- Students would have to present Part 1 to the class in Week
 6.
- This will carry 10 of total marks.

Project I By Raihana Edros http://ocw.ump.edu.my/course/view.php?id= 608¬ifyeditingon=1

Communitising Technology

Main Reference

Steven C. Chapra and Raymond P. Canale (2009), Numerical Methods for Engineers, McGraw-Hill, 6th Edition

> Any enquiries kindly contact: Raihana Edros, PhD rzahirah@ump.edu.my

Project I By Raihana Edros http://ocw.ump.edu.my/course/view.php?id= 608¬ifyeditingon=1

Communitising Technology