NUMERICAL METHODS \& OPTIMISATION

Part II: Numerical Differentiation

Raihana Edros
Faculty of Engineering Technology
rzahirah@ump.edu.my

Numerical Differentiation
By Raihana Edros
http://ocw.ump.edu.my/course/view.php?id=

Chapter Description

- Aims
- Apply numerical methods in solving engineering problem and optimisation
- Expected Outcomes
- Calculate the area under the curve by using different differentiation and integration methods
- Apply the different differentiation and integration methods to solve engineering problems
- References
- Steven C. Chapra and Raymond P. Canale (2009), Numerical Methods for Engineers, McGraw-Hill, $6^{\text {th }}$ Edition

Numerical Differentiation
By Raihana Edros
http://ocw.ump.edu.my/course/view.php?id= 608\¬ifyeditingon=1

Integration of Equation

- The types of functions that can be integrated numerically exist in two forms:
- A table of values: This form of data is limited by the number of points that are given.
- A function: The values of $f(x)$ can be generated as needed to attain the acceptable accuracy.

Numerical Differentiation
By Raihana Edros
http://ocw.ump.edu.my/course/view.php?id= 608\¬ifyeditingon=1

Derivation of the Two-Point Gauss-Legendre Formula

- The general form of this formula is given by:

$$
I \cong c_{0} f\left(x_{0}\right)+c_{1} f\left(x_{1}\right)
$$

- Rearrangement and substitution of the above equation yield:

$$
I \cong f\left(\frac{-1}{\sqrt{3}}\right)+f\left(\frac{1}{\sqrt{3}}\right)
$$

- In the presence of limit of integration, one should modify/ transform the given function using the following equations:

$$
x=\frac{(b+a)+(b-a) x_{d}}{2} \quad d x=\frac{b-a}{2} d x_{d}
$$

Higher Points Gauss-Legendre Formula

- The general form of this formula is given by:
$I \cong c_{0} f\left(x_{0}\right)+c_{1} f\left(x_{1}\right)+\ldots+c_{n-1} f\left(x_{n-1}\right)$
where n is the number of points.
- The values of c's and x's for up to the two points formula are summarized in the following table

Points	Weighting Factors (c)	Function Arguments (x)
1	$c_{o}=1.000000$	$x_{0}=-0.577350$
	$c_{1}=1.000000$	$x_{1}=0.577350$
2	$c_{o}=0.555556$	$x_{0}=-0.774597$
	$c_{1}=0.888889$	$x_{1}=0.0$
	$c_{2}=0.555556$	$x_{2}=0.774597$

Numerical Differentiation By Raihana Edros
http://ocw.ump.edu.my/course/view.php?id= 608\¬ifyeditingon=1

Numerical Differentiation

- This topic has been previously covered in Chapter 1 Taylor Series Expansion was used to derive finite-divideddifference approximations of derivatives
- The finite-divided-difference approximations can be divided to:
- Forward
- Backward
- Centered
- The errors are developed based on the step size used during the estimation
- In this chapter, a more accurate estimation will be developed - reduced error

Higher accuracy differentiation formulas

- High-accuracy divided-difference formulas can be generated by including additional terms from the Taylor series expansion.
- First derivative
$f^{\prime}\left(x_{i}\right)=\frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{h} ;$ Error $=\mathrm{O}(\mathrm{h})$
$f^{\prime}\left(x_{i}\right)=\frac{-f\left(x_{i+2}\right)+4 f\left(x_{i+1}\right)-3 f\left(x_{i}\right)}{2 h} ;$ Error $=O\left(\mathrm{~h}^{2}\right)$
- Second derivative
$f^{\prime \prime}\left(x_{i}\right)=\frac{f\left(x_{i+2}\right)-2 f\left(x_{i+1}\right)+f\left(x_{i}\right)}{h^{2}} ;$ Error $=\mathrm{O}(\mathrm{h})$
$f^{\prime \prime}\left(x_{i}\right)=\frac{-f\left(x_{i+3}\right)+4 f\left(x_{i+2}\right)-5 f\left(x_{i+1}\right)+2 f\left(x_{i}\right)}{h^{2}} ;$ Error $=O\left(\mathrm{~h}^{2}\right)$

Richardson Extrapolation

- There are two ways to improve derivative estimates when employing finite divided differences:
- By decreasing the step size, or
- By using a higher-order formula that employs more points.
- A third approach, based on Richardson extrapolation, uses two derivative estimates to compute a third, more accurate approximation.

$$
D=\frac{4}{3} D\left(h_{2}\right)-\frac{1}{3} D\left(h_{1}\right)
$$

Derivatives of unequally spaced data

- Data from experiments or field studies are often collected at unequal intervals.
- One way to handle such data is to fit a secondorder Lagrange interpolating polynomial.

$$
f^{\prime}(x)=f\left(x_{i-1}\right) \frac{2 x-x_{i}-x_{i+1}}{\left(x_{i-1}-x_{i}\right)\left(x_{i-1}-x_{i+1}\right)}+f\left(x_{i}\right) \frac{2 x-x_{i-1}-x_{i+1}}{\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right)}+f\left(x_{i+1}\right) \frac{2 x-x_{i-1}-x_{i}}{\left(x_{i+1}-x_{i-1}\right)\left(x_{i+1}-x_{i}\right)}
$$

- A jet fighter's position on an aircraft carrier's runway was timed during landing:

\mathbf{t}, \mathbf{s}	$\mathbf{0}$	$\mathbf{0 . 5 2}$	$\mathbf{1 . 0 4}$	1.75	2.37	3.25	3.83
x, m	153	185	210	249	261	271	273

- Where x is the distance from the end of the carrier. Using numerical differentiation, estimate:
- Velocity (dx/dt)
- Acceleration (dv/dt)

Numerical Differentiation
By Raihana Edros
http://ocw.ump.edu.my/course/view.php?id= 608\¬ifyeditingon=1

Conclusion

- The area under the curve can be estimated by using different differentiation and integration methods
- Different differentiation and integration methods can be applied to solve engineering problems

Numerical Differentiation
By Raihana Edros
http://ocw.ump.edu.my/course/view.php?id= 608\¬ifyeditingon=1

Main Reference

Steven C. Chapra and Raymond P. Canale (2009), Numerical Methods for Engineers, McGraw-Hill, $6^{\text {th }}$ Edition

Any enquiries kindly contact:
Raihana Edros, PhD
rzahirah@ump.edu.my

Numerical Differentiation
http://ocw.ump.edu.my/course/view.php?id=

