NUMERICAL METHODS \& OPTIMISATION

Part I: Numerical Differentiation

Raihana Edros
Faculty of Engineering Technology
rzahirah@ump.edu.my

Numerical Differentiation
By Raihana Edros
http://ocw.ump.edu.my/course/view.php?id= 608\¬ifyeditingon=1

Chapter Description

- Aims
- Apply numerical methods in solving engineering problem and optimisation
- Expected Outcomes
- Calculate the area under the curve by using different differentiation and integration methods
- Apply the different differentiation and integration methods to solve engineering problems
- References
- Steven C. Chapra and Raymond P. Canale (2009), Numerical Methods for Engineers, McGraw-Hill, $6^{\text {th }}$ Edition

Numerical Differentiation By Raihana Edros
http://ocw.ump.edu.my/course/view.php?id= 608\¬ifyeditingon=1

Overview

Numerical methods for differentiation and integration

- The function to be differentiated or integrated will typically be in one of the following three forms:
- A simple continuous function such as polynomial, an exponential, or a trigonometric function.
- A complicated continuous function that is difficult or impossible to differentiate or integrate directly.
- A tabulated function where values of x and $f(x)$ are given at a number of discrete points, as is often the case with experimental or field data.

Numerical Differentiation By Raihana Edros

New Cotes Integration Formulas

- Most common numerical integration schemes
- Based on strategy of replacing a complicated function or tabulated data with an approximating function
$I=\int_{a}^{b} f(x) d x \cong \int_{a}^{b} f_{n}(x) d x$
$f_{n}(x)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}+a_{n} x^{n}$
- n is the order of polynomial
a) First order polynomial is used as approximation
b) Parabola for the same purpose

Numerical Differentiation By Raihana Edros
http://ocw.ump.edu.my/course/view.php?id= 608\¬ifyeditingon=1

The Trapezoidal Rule

- The Trapezoidal rule is the first of Newton-Cotes integration formulas, for cases in which the polynomial is first order:

$$
I=\int_{a}^{b} f(x) d x \cong \int_{a}^{b} f_{1}(x) d x
$$

- The area under curve is an estimate of $f(x)$ between the limits of a and b :
$\mathrm{I} \cong$ width x average height

$$
I=(b-a)\left[\frac{f(a)+f(b)}{2}\right]
$$

Numerical Differentiation By Raihana Edros
http://ocw.ump.edu.my/course/view.php?id= 608\¬ifyeditingon=1

The Multiple Application of Trapezoidal Rule

- One way to improve the accuracy of the trapezoidal rule is to divide the integration interval from a to b into n number of segments and apply the method to each segment.
- The areas of individual segments can then be added to yield the integral for the entire interval.

$$
\begin{aligned}
& h=\frac{b-a}{n} \quad a=x_{0} \quad b=x_{n} \\
& I=\int_{x_{0}}^{x_{1}} f(x) d x+\int_{x_{1}}^{x_{2}} f(x) d x+\cdots+\int_{x_{n-1}}^{x_{n}} f(x) d x
\end{aligned}
$$

The Simpson's Rule

- A more accurate estimation of an integral can be obtained if a higher-order polynomial is used to connect the points.
- The formulas that result from taking the integrals under such polynomials are called Simpson's rules.

Simpson's $1 / 3$ Rule

- Results when a second-order Lagrange interpolating polynomial is used.

$$
I \cong(b-a)\left[\frac{f\left(x_{0}\right)+4 f\left(x_{1}\right)+f\left(x_{2}\right)}{6}\right] \quad E_{a}=-\frac{(b-a)^{5}}{2880} f^{(4)}(\xi)
$$

Multiple Application of Simpson's 1/3 Rule

- Just as the trapezoidal rule, Simpson's rule can be improved by dividing the integration interval into a number of segments of equal width.
- Yields accurate results and considered superior to trapezoidal rule for most applications.
- Can be employed only if the number of segments is even

$$
I \cong(b-a)\left[\frac{f\left(x_{0}\right)+4 \sum_{i=1,3,5}^{n-1} f\left(x_{i}\right)+2 \sum_{j=2,4,6}^{n-2} f\left(x_{j}\right)+f\left(x_{n}\right)}{E_{a}=-\frac{(b-a)^{5}}{180 n^{4}} f^{(4)}}\right.
$$

Simpson's 3/8 Rule: Cubic

- Results when a third-order Lagrange interpolating polynomial is used.
- This polynomial can be fit to four points and integrated to yield:

$$
\begin{gathered}
I \cong(b-a)\left[\frac{f\left(x_{0}\right)+3 f\left(x_{1}\right)+3 f\left(x_{2}\right)+f\left(x_{3}\right)}{8}\right] \\
E_{a}=-\frac{(b-a)^{5}}{6480} f^{(4)}(\xi)
\end{gathered}
$$

Illustration of how Simpson's rule $1 / 3$ and $3 / 8$ can be applied in tandem to handle multiple application with odd numbers of intervals

Numerical Differentiation

Conclusion

- The area under the curve can be estimated by using different differentiation and integration methods
- Different differentiation and integration methods can be applied to solve engineering problems

Numerical Differentiation
By Raihana Edros
http://ocw.ump.edu.my/course/view.php?id= 608\¬ifyeditingon=1

Main Reference

Steven C. Chapra and Raymond P. Canale (2009), Numerical Methods for Engineers, McGraw-Hill, $6^{\text {th }}$ Edition

Any enquiries kindly contact:
Raihana Edros, PhD
rzahirah@ump.edu.my

