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Chapter Description

• Aims
– Apply numerical methods in solving engineering problem and 

optimisation

• Expected Outcomes
– Calculate the area under the curve by using different differentiation 

and integration methods 
– Apply the different differentiation and integration methods to solve 

engineering problems

• References
– Steven C. Chapra and Raymond P. Canale (2009), Numerical Methods 

for Engineers, McGraw-Hill, 6th Edition 
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Overview
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• The function to be differentiated or integrated will 
typically be in one of the following three forms:
– A simple continuous function such as polynomial, an 

exponential, or a trigonometric function.
– A complicated continuous function that is difficult or 

impossible to differentiate or integrate directly.
– A tabulated function where values of x and f(x) are 

given at a number of discrete points, as is often the case 
with experimental or field data.

Numerical methods for differentiation and 
integration
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New Cotes Integration Formulas
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• Most common numerical integration schemes
• Based on strategy of replacing a complicated function or 

tabulated data with an approximating function

• n is the order of polynomial 
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a) First order polynomial is used as approximation
b) Parabola for the same purpose
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• The Trapezoidal rule is the first of Newton-Cotes 
integration formulas, for cases in which the polynomial is 
first order:

• The area under curve is an estimate of f(x) between the 
limits of a and b:
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The Trapezoidal Rule

I @ width x average height
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• One way to improve the accuracy of the trapezoidal rule is 
to divide the integration interval from a to b into n number 
of segments and apply the method to each segment.

• The areas of individual segments can then be added to 
yield the integral for the entire interval.
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The Multiple Application of Trapezoidal Rule
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• A more accurate estimation of an integral can be obtained 
if a higher-order polynomial is used to connect the points. 

• The formulas that result from taking the integrals under 
such polynomials are called Simpson’s rules.

Simpson’s 1/3 Rule
• Results when a second-order Lagrange interpolating 

polynomial is used. 

The Simpson’s Rule
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• Just as the trapezoidal rule, Simpson’s rule can be 
improved by dividing the integration interval into a 
number of segments of equal width.

• Yields accurate results and considered superior to 
trapezoidal rule for most applications.

• Can be employed only if the number of segments is even

Multiple Application of Simpson’s 1/3 Rule
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• Results when a third-order Lagrange interpolating 
polynomial is used.

• This polynomial can be fit to four points and integrated to 
yield:

Simpson’s 3/8 Rule: Cubic
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Illustration of how Simpson’s rule 1/3 and 3/8 can be applied 
in tandem to handle multiple application with odd numbers 
of intervals
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Conclusion
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• The area under the curve can be estimated by using different 
differentiation and integration methods 

• Different differentiation and integration methods can be applied to 
solve engineering problems
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