For updated version, please click on http://ocw.ump.edu.my

NUMERICAL METHODS & OPTIMISATION

Part II: Curve Fitting

Raihana Edros Faculty of Engineering Technology <u>rzahirah@ump.edu.my</u>

Curve Fitting By Raihana Edros http://ocw.ump.edu.my/course/view.php?id= 608¬ifyeditingon=1

Chapter Description

- Aims
 - Apply numerical methods in solving engineering problem and optimisation
- Expected Outcomes
 - Estimate the first and higher-order of mathematical model that represents the experimental data by using different kinds of curve fitting methods
 - Estimate the regression coefficient, standard deviation and standard error of experimental data by using different kinds of curve fitting methods
 - Apply the curve fitting methods to solve engineering problems
- References
 - Steven C. Chapra and Raymond P. Canale (2009), Numerical Methods for Engineers, McGraw-Hill, 6th Edition

Curve Fitting By Raihana Edros http://ocw.ump.edu.my/course/view.php?id= 608¬ifyeditingon=1 Communitising Technology

Interpolation

- There are times in which the intermediate values have to be estimated precisely
- Most common method is polynomial that can be represented by:

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

- Polynomial interpolation consists of determining the unique nth-order polynomials that fits n+1 data points
- Three common methods are:
 - Newton's divided-difference interpolating polynomials
 - Langrange interpolating polynomial
 - Spline interpolation

Curve Fitting By Raihana Edros http://ocw.ump.edu.my/course/view.php?id= 608¬ifyeditingon=1

Newton's divided-difference interpolating polynomials

- Common methods:
 - Linear Quadratic Newton polynomial Linear interpolation Quadratic interpolation

Curve Fitting By Raihana Edros http://ocw.ump.edu.my/course/view.php?id= 608¬ifyeditingon=1

Newton's: Linear

- The simplest form of interpolation to connect two data point with straight line
- The shaded areas indicate the similar triangles used to derive the linear-interpolation formula
- The equation is given by:

$$f_1(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0} (x - x_0)$$

Newton's: Quadratic

- Error originated from linear interpolation is huge even at lower step size
- Quadratic interpolation improves the estimation by introducing some curvature into the line connecting the points
- For quadratic interpolation is given by:

$$f_2(x) = b_0 + b_1(x - x_0) + b_2(x - x_0)(x - x_1)$$

$$b_{0} = f(x_{0}) \qquad \qquad \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}} \quad b_{2} = \frac{\frac{f(x_{1}) - f(x_{1})}{x_{2} - x_{0}} - \frac{f(x_{1}) - f(x_{0})}{x_{1} - x_{0}}$$

• Quadratic interpolation requires some extra steps in which the coefficients b₀, b₁ & b₂ have to be firstly determined

Newton's: Quadratic - Exercise

Given the data:

X	1.6	2	2.5	3.2	4	4.5
f(x)	2	8	14	15	8	2

a) Calculate f(2.8) using Newton's interpolating polynomials of order 1 to 3. Choose the sequence of the points for your estimates to attain the best possible accuracy.

Langrange interpolating polynomials

• A reformulation of Newton's polynomial that avoids the computation of divided difference

$$f_n(x) = \sum_{i=0}^n L_i(x) f(x_i)$$

$$L_{i}(x) = \prod_{\substack{j=0\\j\neq 0}}^{n} \frac{x - x_{j}}{x_{i} - x_{j}}$$

Spline Interpolation

- Using previous methods, interpolation makes curve fitting easier
- Eg: For 8 points data, 7th order polynomial can be used to predict the curve
- However, this can lead to erroneous results due to round-off errors – especially for functions with the presence of abrupt changes
- Spline interpolation can deal with this case easily

Spline interpolation (cont'd)

Curve Fitting By Raihana Edros http://ocw.ump.edu.my/course/view.php?id= 608¬ifyeditingon=1

Spline interpolation: Linear

- Linear spline is regarded as first-order spline
- The simplest connection between 2 points & can be defined as:

$$\begin{aligned} f(x) &= f(x_0) + m_0(x - x_0) & x_0 \le x \le x_1 \\ f(x) &= f(x_1) + m_1(x - x_1) & x_1 \le x \le x_2 \\ \vdots & \vdots & \\ f(x) &= f(x_{n-1}) + m_{n-1}(x - x_{n-1}) & x_{n-1} \le x \le x_n \end{aligned}$$

• Where m_i is the slope of the <u>straight line</u>

Spline interpolation: Linear (cont'd)

Curve Fitting By Raihana Edros http://ocw.ump.edu.my/course/view.php?id= 608¬ifyeditingon=1

Conclusion

- First and higher-order of mathematical model that represents the experimental data can be estimated by using different kinds of curve fitting methods
- Regression coefficient, standard deviation and standard error of experimental data can be estimated by using different kinds of curve fitting methods

Main Reference

Steven C. Chapra and Raymond P. Canale (2009), Numerical Methods for Engineers, McGraw-Hill, 6th Edition

> Any enquiries kindly contact: Raihana Edros, PhD rzahirah@ump.edu.my

Curve Fitting By Raihana Edros http://ocw.ump.edu.my/course/view.php?id= 608¬ifyeditingon=1