For updated version, please click on http://ocw.ump.edu.my

NUMERICAL METHODS & OPTIMISATION

Part I: Curve Fitting

Raihana Edros Faculty of Engineering Technology <u>rzahirah@ump.edu.my</u>

Curve Fitting By Raihana Edros http://ocw.ump.edu.my/course/view.php?id= 608¬ifyeditingon=1

Chapter Description

- Aims
 - Apply numerical methods in solving engineering problem and optimisation
- Expected Outcomes
 - Estimate the first and higher-order of mathematical model that represents the experimental data by using different kinds of curve fitting methods
 - Estimate the regression coefficient, standard deviation and standard error of experimental data by using different kinds of curve fitting methods
 - Apply the curve fitting methods to solve engineering problems
- References
 - Steven C. Chapra and Raymond P. Canale (2009), Numerical Methods for Engineers, McGraw-Hill, 6th Edition

Overview of Curve Fitting

- Data are always presented in discrete values along a continuum
- Estimates are required between the discrete values curve fitting
- Curve fitting can be achieved by computing values of the function at a number of discrete values along the range of interest
- Two general approaches:
- Least-squares regression: derive a single curve that represents the general trend of the data
- Interpolation: very precise, fitting a curve that passes directly through each points
 Curve Fitting By Baihana Edros

Overview of Curve Fitting (cont'd)

- In curve fitting, the intermediate values are determined from tabulated data
- Curve fitting is used in engineering for
- Trend analysis: predictions are made based on the pattern of data
- Hypothesis testing: the measured data are compared to the existing mathematical model

Overview of Curve Fitting (cont'd)

Least squares regression

- Polynomial interpolation is inappropriate for data associated with large error – originates from experiments
- Types of least squares regression:
- Linear regression
- Polynomial regression
- Multiple linear regression

Linear Regression: Example 17.1

 Fitting a straight line to a set of paired observation (x₁, y₁), (x₂, y₂),...,(x_n, y_n) by using the following equations:

$$y = a_0 + a_1 x + e$$
$$a_1 = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_1^2 - (\sum x_i)^2}$$

Linear Regression: Error

- The error or residual represent the vertical distance between the measured data and the straight line.
- For the best fit: Minimize the total sum of the squares of the residuals (error) between the measured y and y calculated with the linear model

Linear Regression: Error (cont'd)

- Linear regression with small and large errors
- Standard deviation, *S_y* is normally used to measure the spread of data:

$$S_r = \sum_{i=1}^n (y_1 - a_0 - a_1 x_1)^2$$

Linear Regression: Error (cont'd)

- Least squares regression provides the best fit if the following criteria are met maximum likelihood principle:
 - The spread of the point along the line is of similar magnitude along the entire range of data
 - The distribution of these points about the line is normal

$$S_{y/x} = \sqrt{\frac{S_r}{n-2}}$$

- If these criteria are met, the standard deviation for the regression line can be determined as:
- The standard deviation is called standard error
- y/x: the error is for a predicted value of y corresponding to a particular value of x

Linear Regression: Error (cont'd)

- The following equation quantifies the improvement or error reduction due to describing the data in terms of a straight line than as an average value
- Because the magnitude of this quantity is scale-dependent, the coefficient of determination and r is the correlation coefficient:

$$r^2 = \frac{S_t - S_r}{S_t}$$

- For a perfect fit: S_r =0 and $r = r^2 = 1$, the line explains 100 percent of the variability of the data.
- For $r = r^2 = 0$, $S_r = S_t$, the fit represents no improvement.

Polynomial Regression

- Some engineering data generated from experiments can be poorly represented by a straight line
- For this case, curve would be a better option to fit the data
- Alternatives:
 - To transform the data into straight line
 - To fit polynomials to the data using polynomial regression
- The following equation is used as a model to fit the data:

$$y = a_0 + a_1 x + a_2 x^2 + e$$

• With ao, a1 and a2 are determined by the following simultaneous equations:

$$(n)a_{0} + (\sum x_{i})a_{1} + (\sum x_{i}^{2})a_{2} = \sum y_{i}$$

$$(\sum x_{i})a_{0} + (\sum x_{i}^{2})a_{1} + (\sum x_{i}^{3})a_{2} = \sum x_{i}y_{i}$$

$$(\sum x_{i}^{2})a_{0} + (\sum x_{i}^{3})a_{1} + (\sum x_{i}^{4})a_{2} = \sum x_{i}^{2}y_{i}$$

Curve Fitting By Raihana Edros http://ocw.ump.edu.my/course/view.php? id=608¬ifyeditingon=1

Polynomial Regression (cont'd)

• The standard error can be calculated by using the following equation:

$$s_{y/x} = \sqrt{\frac{S_r}{n - (m+1)}}$$

• m is the order of polynomial

Polynomial Regression: Exercise

Use polynomial regression to fit a **parabola** to the data:

X	1	2	3	4	5	6	7	8	9
У	1	1.5	2	3	4	5	8	10	13

Curve Fitting By Raihana Edros http://ocw.ump.edu.my/course/view.php?id=608¬ifye ditingon=1

Multiple Linear Regression

• In multiple linear regression, y is a linear function of two or more independent variables (x_1, x_2, x_3) , and is given by:

$$y = a_0 + a_1 x_1 + a_2 x_2 + e$$

 a₀, a₁ and a₂ can be calculated by using gauss elimination method as follows:

$$\begin{bmatrix} n & \sum x_{1i} & \sum x_{2i} \\ \sum x_{1i} & \sum x_{1i}^{2} & \sum x_{1i}x_{2i} \\ \sum x_{2i} & \sum x_{1i}x_{2i} & \sum x_{2i}^{2} \end{bmatrix} \begin{bmatrix} a_{0} \\ a_{1} \\ a_{2} \end{bmatrix} = \begin{bmatrix} \sum y_{i} \\ \sum y_{i}x_{1i} \\ \sum y_{i}x_{2i} \end{bmatrix}$$

• The standard error is given by:

$$S_{y/x} = \sqrt{\frac{S_r}{n - (m+1)}}$$

Curve Fitting By Raihana Edros http://ocw.ump.edu.my/course/view.php?id=608¬ifye ditingon=1

Multiple Linear Regression: Exercise

Use multiple linear regression to fit:

X ₁	1	2	3	4	5	6	7	8	9
X ₂	0	2	2	4	4	6	6	2	1
У	1	1.5	2	3	4	5	8	10	13

Compute the coefficients, standard error of the estimate, and the correlation coefficient.

Conclusion

- First and higher-order of mathematical model that represents the experimental data can be estimated by using different kinds of curve fitting methods
- Regression coefficient, standard deviation and standard error of experimental data can be estimated by using different kinds of curve fitting methods

Curve Fitting By Raihana Edros http://ocw.ump.edu.my/course/view.php?id=608¬ifye ditingon=1

RZE/2015/BTP2412

Main Reference

Steven C. Chapra and Raymond P. Canale (2009), Numerical Methods for Engineers, McGraw-Hill, 6th Edition

> Any enquiries kindly contact: Raihana Edros, PhD rzahirah@ump.edu.my

Curve Fitting By Raihana Edros http://ocw.ump.edu.my/course/view.php?id=608¬ifye ditingon=1