NUMERICAL METHODS \& OPTIMISATION

Part l: Optimisation

Raihana Edros
Faculty of Engineering Technology
rzahirah@ump.edu.my

Chapter Description

- Aims
- Apply numerical methods in solving engineering problem and optimisation
- Expected Outcomes
- Calculate the maximum, minimum and optimal values of an equation by using the following methods for optimisation:
- Golden-Section Search
- Quadratic Interpolation
- Solve engineering problems by using methods for optimisation
- References
- Steven C. Chapra and Raymond P. Canale (2009), Numerical Methods for Engineers, McGraw-Hill, 6 ${ }^{\text {th }}$ Edition

Overview of Optimization

- Root of equation (Chapter 2) and optimization (Chapter 4) are similar
- Root of equation: finding the values of x at $\mathrm{f}(\mathrm{x})=\mathrm{o}$
- Optimization: finding the values of x at maximum and minimum point of $f(x)$
- Optimum is the point where the curve is flat - values of $\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{o}$
- The second derivatives f " (x) indicates whether the point at which slope is zero is minimum or maximum
- $\mathrm{f}^{\prime \prime}(\mathrm{x})<0$: maximum point
- $\mathrm{f}^{\prime \prime}(\mathrm{x})>0$: minimum point
- These values are known as optima
$-\mathrm{f}(\mathrm{x})=\mathrm{o}-\operatorname{root}$
$-\mathrm{f}^{\prime}(\mathrm{x})=\mathrm{o}$ - optima

Overview of Optimization (cont’d)

- Understanding the relationship between root and optima helps to determine the suitable method to be used in finding optima
- Example:
- Through the differentiation of a function $f^{\prime}(x)$ and later locate the root of the newly derived function
- Complex - $f^{\prime}(x)$ is sometime not available analytically
- Different strategy should be used: e.g. finite difference approximations to estimate the derivatives
- Optimization deals with finding the best results or optimum solution using the prescriptive models

Optimisation
By Raihana Edros

Optimization: Case study

- Optimization of Parachute Cost
- Problem statement:
- To determine the size)r) and number of chutes (n) that result in the minimum cost while at the same time having the small impact velocity

$$
\text { Cost per chute }=c_{0}+c_{1} l+c_{2} A^{2}
$$

- Information
- Supplies will be dropped at an altitude of 500m
- The chute opens immediately upon leaving the plane
- Vertical velocity of impact should be below $v_{c}=20 \mathrm{~m} / \mathrm{s}$
$-c_{o}$ is the base price for the chutes
- The relationship is non-linear - larger chutes are difficulte to construct thus the price is higher

Optimization: Case study

- Optimization of Parachute Cost
- Problem statement:
- To determine the size)r) and number of chutes (n) that result in the minimum cost while at the same time having the small impact velocity
- Information

$$
\text { Cost per chute }=c_{0}+c_{1} l+c_{2} A^{2}
$$

- Supplies will be dropped at an altitude of 500 m
- The chute opens immediately upon leaving the plane
- Vertical velocity of impact should be below $v_{c}=20 \mathrm{~m} / \mathrm{s}$
- c_{o} is the base price for the chutes
- The relationship is non-linear - larger chutes are difficulte to construct thus the price is higher

Optimization: Case study (cont'd)

- Given:
$A=2 \pi r^{2}$: Cross sectional area of balloon
$l=\sqrt{2 r}$: Length connecting chute \& mass
$c=k_{c} A$: Drag coefficient; effect of area on drag coefficient
$m=\frac{M_{t}}{n}$: Mass of individual parcel

Overview of Optimization (cont’d)

One - dimensional Unconstrained Optimization

- Root of equation - several roots can occur for a single function multimodal
- To find the min and maximum value of a single variable function, $f(x)$
- These values are known as optima - local \& global optima - difficult to be distinguished
- 3 approaches:
- Graphical method
- Random initial guesses - the largest value is the global optima
- Perturbing the starting point associated with a local optimum checking whether the routine returns a better point or always return to the same point
- One dimension optimization involves 2 types of methods:
- Bracketing methods: Golden-search section, Quadratic interpolation
- Open methods: Newton method

Golden-section Search

- Single variable optimization has the goal of finding the value of x that yields an extremum - maximum \& minimum of $f(x)$
- Simple, general purpose \& similar to bisection method with some modifications to find minimum
- The initial step of involves a selection of two interior points according to the golden ratio.
- Golden-search calculation involves a selection of 4 values: 2 extrems of interval: $\mathrm{x}_{\text {upper }}$ and $\mathrm{x}_{\text {lower }}, 2$ intermediate values, $\mathrm{x}_{1} \& \mathrm{X}_{2}$

Optimisation
By Raihana Edros
http://ocw.ump.edu.my/course/view.php?id=60 8\¬ifyeditingon=1

Golden-section search (cont’d)

- The first condition specifies that the sum of the two sub lengths l_{1} and l_{2} must be equal to the original interval length.
- The second condition assumes that the ratio of the length must be equal.
- The R value is called Golden Ratio which allows the optima to be found efficiently

$$
\begin{array}{ll}
l_{0}=l_{1}+l_{2} & \frac{l_{1}}{l_{1}+l_{2}}=\frac{l_{2}}{l_{1}} \quad R=\frac{l_{2}}{l_{1}} \\
\frac{l_{1}}{l_{0}}=\frac{l_{2}}{l_{1}} & 1+R=\frac{1}{R} \quad R^{2}+R-1=0 \\
& R=\frac{-1+\sqrt{1-4(-1)}}{2}=\frac{\sqrt{5}-1}{2}=0.61803
\end{array}
$$

Golden-section search: Algorithm

- Select two initial guesses, x_{l} and x_{u} that bracket one local extremum
- Determine two intermediate values, x1 \& x2 from the following equations. These values are chosen according to the golden ratio

$$
d=\frac{\sqrt{5}-1}{2}\left(x_{u}-x_{l}\right) \quad \begin{aligned}
& x_{1}=x_{l}+d \\
& x_{2}=x_{u}-d
\end{aligned}
$$

- Test the results for the following conditions:
- If $f\left(x_{1}\right)>f\left(x_{2}\right): \mathrm{x}$ is to the left of x_{2} from x_{1} to x_{2}, thus x_{2} is the new x_{1}
- If $f\left(x_{2}\right)>f\left(x_{1}\right)$: x is to the right of x_{2} from x_{1} to x_{u}, thus x_{2} is the new x_{u}
- Determine the approximation error:

$$
\varepsilon_{a}=(1-R)\left|\frac{x_{u}-x_{l}}{x_{\text {opt }}}\right| 100 \%
$$

Optimisation
By Raihana Edros
http://ocw.ump.edu.my/course/view.php?id=60

Golden-section search: Examp

Use the golden-section search to find the maximum of

$$
f(x)=2 \sin x-\frac{x^{2}}{10}
$$

within the interval $x_{l}=0$ and $x_{u}=4$ and perform three iterations. Calculate ε_{a} after each iteration.

Quadratic Interpolation

- Involves 3 points connected by one quadratic function

$$
x_{3}=\frac{f\left(x_{0}\right)\left(x_{1}^{2}-x_{2}^{2}\right)+f\left(x_{1}\right)\left(x_{2}^{2}-x_{0}^{2}\right)+f\left(x_{2}\right)\left(x_{0}^{2}-x_{1}^{2}\right)}{2 f\left(x_{0}\right)\left(x_{1}-x_{2}\right)+2 f\left(x_{1}\right)\left(x_{2}-x_{0}\right)+2 f\left(x_{2}\right)\left(x_{0}-x_{1}\right)}
$$

- Where x_{0}, x_{1} and x_{2} are the initial guesses and x_{3} is the value of x that corresponds to the maximum value of the quadratic fit to the guesses.
- Strategy is similar to golden-section search to decide which point to be discarded

Quadratic Interpolation: Example

Use quadratic interpolation to approximate the maximum of

$$
f(x)=2 \sin x-\frac{x^{2}}{10}
$$

within initial guesses of $x_{0}=0, x_{1}=1$ and $x_{2}=4$, and perform three iterations.

Optimisation
By Raihana Edros
http://ocw.ump.edu.my/course/view.php?id=60 8\¬ifyeditingon=1

Exercise

a) Solve for the value of \mathbf{x} that maximizes $f(x)$ in Prob 13.2 using golden section search. Employ initial guesses of $x_{I}=0$ and $x_{u}=2$ and perform three iterations.

$$
f(x)=-1.5 x^{6}-2 x^{4}+12 x
$$

b) Repeat (a), except use quadratic interpolation. Employ initial guesses of $\boldsymbol{x}_{\boldsymbol{o}}=\mathbf{0}, \boldsymbol{x}_{\boldsymbol{1}}=\boldsymbol{1}$ and
$x_{2}=2$, and perform three iterations.

Conclusion

- The maximum, minimum and optimal values of an equation can be estimated by using Golden-Section Search and Quadratic Interpolation for optimization

Main Reference

Steven C. Chapra and Raymond P. Canale (2009), Numerical Methods for Engineers, McGraw-Hill, $6^{\text {th }}$ Edition

Any enquiries kindly contact:
Raihana Edros, PhD
rzahirah@ump.edu.my

