For updated version, please click on http://ocw.ump.edu.my

NUMERICAL METHODS & OPTIMISATION

Part I: Optimisation

Raihana Edros Faculty of Engineering Technology <u>rzahirah@ump.edu.my</u>

Optimisation By Raihana Edros http://ocw.ump.edu.my/course/view. php?id=608¬ifyeditingon=1

Communitising Technology

Chapter Description

- Aims
 - Apply numerical methods in solving engineering problem and optimisation
- Expected Outcomes
 - Calculate the maximum, minimum and optimal values of an equation by using the following methods for optimisation:
 - Golden-Section Search
 - Quadratic Interpolation
 - Solve engineering problems by using methods for optimisation
- References
 - Steven C. Chapra and Raymond P. Canale (2009), Numerical Methods for Engineers, McGraw-Hill, 6th Edition

Overview of Optimization

- Root of equation (Chapter 2) and optimization (Chapter 4) are similar
 - Root of equation: finding the values of x at f(x) = o
 - Optimization: finding the values of x at maximum and minimum point of f(x)
- Optimum is the point where the curve is flat values of
 f'(x) = o
- The second derivatives f"(x) indicates whether the point at which slope is zero is minimum or maximum
 - f''(x) < o : maximum point
 - f''(x) > o : minimum point
- These values are known as optima
 - f(x) = o root
 - f'(x) = o optima

Overview of Optimization (cont'd)

- Understanding the relationship between root and optima helps to determine the suitable method to be used in finding optima
- Example:
 - Through the differentiation of a function f'(x) and later locate the root of the newly derived function
 - Complex f'(x) is sometime not available analytically
 - Different strategy should be used: e.g. finite difference approximations to estimate the derivatives
- Optimization deals with finding the best results or optimum solution using the prescriptive models

Optimization: Case study

- Optimization of Parachute Cost
- Problem statement:
 - To determine the size)r) and number of chutes (n) that result in the minimum cost while at the same time having the small impact velocity

Cost per chute = $c_0 + c_1 l + c_2 A^2$

- Information
 - Supplies will be dropped at an altitude of 500m
 - The chute opens immediately upon leaving the plane
 - Vertical velocity of impact should be below $v_c = 20 \text{ m/s}$
 - $-c_{o}$ is the base price for the chutes
 - The relationship is non-linear larger chutes are difficulte to construct thus the price is higher
 Optimisation By Baibana Edros

Optimization: Case study

- Optimization of Parachute Cost
- Problem statement:
 - To determine the size)r) and number of chutes (n) that result in the minimum cost while at the same time having the small impact velocity

 $Cost \ per \ chute = c_0 + c_1 l + c_2 A^2$

- Information
 - Supplies will be dropped at an altitude of 500m
 - The chute opens immediately upon leaving the plane
 - Vertical velocity of impact should be below $v_c = 20 \text{ m/s}$
 - $-c_{o}$ is the base price for the chutes
 - The relationship is non-linear larger chutes are difficulte to construct thus the price is higher

Optimization: Case study (cont'd)

- Given:
 - $A = 2\pi r^2$: Cross sectional area of balloon
 - $l = \sqrt{2r}$: Length connecting chute & mass
 - $c = k_c A$: Drag coefficient; effect of area on drag coefficient $m = \frac{M_t}{n}$: Mass of individual parcel

Overview of Optimization (cont'd)

Optimisation By Raihana Edros http://ocw.ump.edu.my/course/view.php?id=608¬ifyeditingon=1

27/08/2017

One – dimensional Unconstrained Optimization

- Root of equation several roots can occur for a single function multimodal
- To find the min and maximum value of a single variable function, f(x)
- These values are known as optima local & global optima difficult to be distinguished
- 3 approaches:
 - Graphical method
 - Random initial guesses the largest value is the global optima
 - Perturbing the starting point associated with a local optimum checking whether the routine returns a better point or always return to the same point
- One dimension optimization involves 2 types of methods:
 - Bracketing methods: Golden-search section, Quadratic interpolation
 - Open methods: Newton method

Golden-section Search

- Single variable optimization has the goal of finding the value of x that yields an extremum maximum & minimum of f(x)
- Simple, general purpose & similar to bisection method with some modifications to find minimum
- The initial step of involves a selection of two interior points according to the **golden ratio**.
- Golden-search calculation involves a selection of 4 values: 2 extrems of interval: x_{upper} and x_{lower} , 2 intermediate values, $x_1 \& x_2$

Golden-section search (cont'd)

- The first condition specifies that the sum of the two sub lengths l_1 and l_2 must be equal to the original interval length.
- The second condition assumes that the ratio of the length must be equal.
- The R value is called Golden Ratio which allows the optima to be found efficiently

Golden-section search: Algorithm

- Select two initial guesses, x_l and x_u that bracket one local extremum
- Determine two intermediate values, x1 & x2 from the following equations. These values are chosen according to the golden ratio

$$d = \frac{\sqrt{5} - 1}{2} (x_u - x_l) \qquad \begin{array}{l} x_1 = x_l + d \\ x_2 = x_u - d \end{array}$$

- Test the results for the following conditions:
 - If $f(x_1) > f(x_2)$: x is to the left of x_2 from x_1 to x_2 , thus x_2 is the new x_1
 - If $f(x_2) > f(x_1)$: x is to the right of x_2 from x_1 to x_u , thus x_2 is the new x_u
- Determine the approximation error:

$$\varepsilon_a = (1 - R) \left| \frac{x_u - x_l}{x_{opt}} \right| 100\%$$

Golden-section search: Example PAHANG

Use the golden-section search to find the maximum of

$$f(x) = 2\sin x - \frac{x^2}{10}$$

within the interval $x_l = 0$ and $x_u = 4$ and **perform three iterations**. Calculate ε_a after each iteration.

Optimisation By Raihana Edros http://ocw.ump.edu.my/course/view.php?id=60 8¬ifyeditingon=1

RZE/2015/BTP2412

Communitising Technology

Quadratic Interpolation

• Involves 3 points connected by one quadratic function

$$x_{3} = \frac{f(x_{0})(x_{1}^{2} - x_{2}^{2}) + f(x_{1})(x_{2}^{2} - x_{0}^{2}) + f(x_{2})(x_{0}^{2} - x_{1}^{2})}{2f(x_{0})(x_{1} - x_{2}) + 2f(x_{1})(x_{2} - x_{0}) + 2f(x_{2})(x_{0} - x_{1})}$$

- Where x_o, x₁ and x₂ are the initial guesses and x₃ is the value of x that corresponds to the maximum value of the quadratic fit to the guesses.
- Strategy is similar to golden-section search to decide which point to be discarded
 Optimisation

Quadratic Interpolation: Example

Use quadratic interpolation to approximate the maximum of

$$f(x) = 2\sin x - \frac{x^2}{10}$$

within initial guesses of $x_0 = 0$, $x_1 = 1$ and $x_2 = 4$, and **perform three iterations**.

Optimisation By Raihana Edros http://ocw.ump.edu.my/course/view.php?id=60 8¬ifyeditingon=1

Exercise

a) Solve for the value of x that maximizes f(x) in Prob 13.2 using golden section search. Employ initial guesses of $x_l = 0$ and $x_u = 2$ and perform three iterations.

$$f(x) = -1.5x^6 - 2x^4 + 12x$$

b) Repeat (a), except use quadratic interpolation. Employ initial guesses of $x_o = o$, $x_1 = 1$ and $x_2 = 2$, and perform three iterations.

Conclusion

• The maximum, minimum and optimal values of an equation can be estimated by using Golden-Section Search and Quadratic Interpolation for optimization

Main Reference

Steven C. Chapra and Raymond P. Canale (2009), Numerical Methods for Engineers, McGraw-Hill, 6th Edition

Any enquiries kindly contact: Raihana Edros, PhD rzahirah@ump.edu.my

Optimisation By Raihana Edros http://ocw.ump.edu.my/course/view.php?id=60 8¬ifyeditingon=1

Communitising Technology