NUMERICAL METHODS \& OPTIMISATION

Roots of Equation Tutorial

Raihana Edros
Faculty of Engineering Technology
rzahirah@ump.edu.my

Roots of Equation: Tutorial
By Raihana Edros
http://ocw.ump.edu.my/course/view.php?id=608\¬ifyeditingon=1

Chapter Description

- Aims
- Apply numerical methods in solving engineering problem and optimisation
- Expected Outcomes
- Apply bracketing method in finding the roots of equation for engineering problems
- References
- Steven C. Chapra and Raymond P. Canale (2009), Numerical Methods for Engineers, McGraw-Hill, 6 ${ }^{\text {th }}$ Edition

Roots of Equation: Tutorial
By Raihana Edros
http://ocw.ump.edu.my/course/view.php?id=608\¬ifyeditingon=1

Application in engineering problem: Class activity

Water is flowing in a trapezoidal channel at a rate of $Q=20 \mathrm{~m}^{3} / \mathrm{s}$. the critical depth, y for such channel must satisfy the following equation:

$$
0=1-\frac{Q^{2}}{g A_{C}^{3}} B
$$

Where $g=9.81 \mathrm{~m} / \mathrm{s} 2, A_{C}$ - the cross sectional area $\left(\mathrm{m}^{2}\right)$ and $B=$ the width of the channel at the surface (m). For this case, B and A_{C} can be related to y by

$$
B=3+y \quad A_{C}=3 y+\frac{y^{2}}{2}
$$

Solve for the critical depth using (a) the graphical method (b) bisection method and (c) false-position. For (b) and (c) use initial guesses of $x_{l}=0.5$ and $x_{u}=2.5$ and perform the iteration until the approximate error falls below 1% or the number of iteration exceeds 10.
Ans: (a) 1.35 (b) 1.3274 i=10th (c) 1.3516 i=8th

Application in engineering problem: Class activity

The position of a ball, thrown down with a given initial velocity, v_{0}, and initial position x_{o}, is subjected to the air resistance that is proportional to its velocity, is given by:

$$
x(t)=\rho^{-1}\left(v_{0}+v_{r}\right)\left(1-e^{-\rho t}\right)-v_{r} t+x_{0}
$$

Where $\boldsymbol{\rho}$ is the drag coefficient, g is gravity, $v_{r}=\frac{g}{\rho}=\frac{m g}{k} \quad$ is the terminal velocity. Find the time when the ball hits the ground if $x_{0}=5 \mathrm{~m}$ and $v_{o}=20$ $\mathrm{m} / \mathrm{s}, \boldsymbol{\rho}=0.35, \mathrm{~g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$ by using open methods

Ans: (a) Newton Raphson: 3.765306 i=3rd (b) Secant: 3.7653306 i=3rd (c) Fixed-point iteration: $3.764103 \mathrm{i}=15$ th

Conclusion

- The open methods can be applied to engineering problems in order to find the roots of equations

Roots of Equation: Tutorial
By Raihana Edros
http://ocw.ump.edu.my/course/view.php?id=608\¬ifyeditingon=1

Main Reference

Steven C. Chapra and Raymond P. Canale (2009), Numerical Methods for Engineers, McGraw-Hill, $6^{\text {th }}$ Edition

Any enquiries kindly contact:
Raihana Edros, PhD
rzahirah@ump.edu.my

