NUMERICAL METHODS \& OPTIMISATION

Part II: Roots of Equation Open Methods

Raihana Edros
Faculty of Engineering Technology
rzahirah@ump.edu.my

Roots of Equation
By Raihana Edros
http://ocw.ump.edu.my/course/view.php?id=608\¬ifyeditingon=1

Chapter Description

- Aims
- Apply numerical methods in solving engineering problem and optimisation
- Expected Outcomes
- Calculate the root of equation by using open methods
- Simple-fixed Method
- Secant Method
- Newton Raphson Method
- Apply bracketing method in finding the roots of equation for engineering problems
- References
- Steven C. Chapra and Raymond P. Canale (2009), Numerical Methods for Engineers, McGraw-Hill, 6 ${ }^{\text {th }}$ Edition

Roots of Equation

Open Methods

- Bracketing methods: the root is located within an interval prescribed by lower \& upper bound
- Repeated computation results in closer estimates of $\mathrm{x}_{\text {root }}$
- These estimates are called as convergent
- Open methods required a single starting value of x or two starting values that do not necessarily bracket the root.

Roots of Equation
By Raihana Edros
http://ocw.ump.edu.my/course/view.php?id=608\¬ifyeditingon=1

Bracketing vs. Open Methods

Bracketing Methods	Open Methods
- 2 initial guesses	-Can be either 1 or 2 initial guesses depending on the method used
- Root is located within lower and	-Root does not necessarily lie in bracket
upper intervalsCloser estimates of the actual value can be calculated through repetition	Convergence of values occurs as computation progresses
-Divergence of values are possible throughout calculation If convergence occurs, the values move closer quickly	

Simple-Fixed Point Iteration

1. Rearrange the function so that x is on the left side of the equation:

For example,

$x^{2}-2 x+3=0$ becomes $x=\frac{x^{2}+3}{2}$
2
$x=g(x) \quad \sin x=0$ becomes $x=\sin x+x$
2. Begin with a given initial value, calculate a new value of $x\left(x_{i+1}\right)$ by using an old value of $x\left(x_{i}\right)$ and so on.

Simple-Fixed Point Iteration

4. Compute the ε_{a}

$$
\varepsilon_{a}=\left|\frac{x_{i+1}-x_{i}}{x_{i+1}}\right| \times 100 \%
$$

5. Iteration can be terminated until the

 ε_{a} is lower than the given ε_{s}.Roots of Equation
By Raihana Edros

Open Methods

Use simple fixed-point iteration to locate the root of $f(x)=e^{-x}-x$. Start your calculation with $x_{o}=0$;

$$
x_{i+1}=e^{-x_{i}}
$$

Solution:

The equation can be rearranged and expressed as follows:

Roots of Equation
By Raihana Edros

Newton-Raphson Method

- Most widely used method.
- If the initial guess at the root is x_{i}, a tangent can be extended to across the x axis.
- The point where a tangent across give an improved estimates of

Source: https://commons.wikimedia.org/wiki/File:NewtonRaphson_method.png the root $\left(x_{i+1}\right)$.

Steps of Newton-Raphson

- Based on Taylor Series Expansion, the NewtonRaphson formula is given by:

$$
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}
$$

1. Begin the calculation with any initial value
2. Calculate a new value of $x\left(x_{i+1}\right)$ by using an old value of $x\left(x_{i}\right)$ and so on.

Roots of Equation
By Raihana Edros
http://ocw.ump.edu.my/course/view.php?id=608\¬ifyeditingon=1

Steps of Newton-Raphson

- Compute the $\boldsymbol{\varepsilon}_{a}$

$$
\varepsilon_{a}=\left|\frac{x_{i+1}-x_{i}}{x_{i+1}}\right| \times 100 \%
$$

- Iteration can be terminated until the $\boldsymbol{\varepsilon}_{a}$ is lower than the given $\boldsymbol{\varepsilon}_{s}$

Roots of Equation
By Raihana Edros
http://ocw.ump.edu.my/course/view.php?id=608\¬ifyeditingon=1

Newton-Raphson Method: Example

Use Newton-Raphson method to estimate the

 root of $f(x)=e^{-x}-x$, employing an initial guess of $\mathrm{x}_{\mathrm{o}}=0$.
Solution:

The first derivative:

$$
f^{\prime}(x)=-e^{-x}-1 \quad x_{i+1}=x_{i}-\frac{e^{-x_{i}}-x_{i}}{-e^{-x_{i}}-1}
$$

Newton-Raphson Method: Solution

Iteration	x_{i}	$\varepsilon_{a}(\%)$	$\varepsilon_{t}(\%)$
0	0	-	100
1	0.5	100	11.8
2	0.566311	11.7	0.147
3	0.567143	0.15	0.000022
4	0.567143	2.2×10^{-5}	$<10^{-8}$

$\boldsymbol{\varepsilon}_{a}$ and $\boldsymbol{\varepsilon}_{T}$ in Newton-Raphson decreases faster than simple - fixed point iteration

Roots of Equation
By Raihana Edros
http://ocw.ump.edu.my/course/view.php?id=608\¬ifyeditingon=1

Newton-Raphson Method: Class activity

Use:

1. The fixed-point iteration and
2. Newton-Raphson method to determine the roots of

$$
f(x)=-x^{2}+1.8 x+2.5
$$

By using $x_{0}=5$. Perform the calculation until ε_{a} is less than $\varepsilon_{\mathrm{s}=} 0.05 \%$.

Roots of Equation
By Raihana Edros
http://ocw.ump.edu.my/course/view.php?id=608\¬ifyeditingon=1

Secant Method

- This method uses the similar technique as NewtonRaphson method
- A potential problem in implementing Newton-Raphson is evaluation of the derivative, $f^{\prime}\left(x_{i}\right)$.
- For Secant method, the derivative $f^{\prime}\left(x_{i}\right)$ can be approximated by a backward finite divided difference and is given by:

$$
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)\left(x_{i-1}-x_{i}\right)}{f\left(x_{i-1}\right)-f\left(x_{i}\right)}
$$

Steps of Secant Method

1. Begin with a given initial value, calculate a new value of $x\left(x_{i+1}\right)$ by using an old value of $x\left(x_{i}\right)$ and so on.
2. Compute the $\boldsymbol{\varepsilon}_{a}$

$$
\varepsilon_{a}=\left|\frac{x_{i+1}-x_{i}}{x_{i+1}}\right| \times 100 \%
$$

3. Iteration can be terminated until the ε_{a} is lower than the given $\boldsymbol{\varepsilon}_{s}$.

Roots of Equation

Secant Method: Example

Use Secant method to estimate the root of

 $f(x)=e^{-x}-x$. Start with initial estimates of $x_{-1}=0$ and $x_{0}=1.0$.(Recall that the true root is 0.56714329)

Conclusion

- The root of equation can be estimated by using open methods such as simple-fixed iteration, Secant and Newton Raphson methods.
- The open methods can be applied to engineering problems in order to find the roots of equations

Roots of Equation
By Raihana Edros
http://ocw.ump.edu.my/course/view.php?id=608\¬ifyeditingon=1

Main Reference

Steven C. Chapra and Raymond P. Canale (2009), Numerical Methods for Engineers, McGraw-Hill, $6^{\text {th }}$ Edition

Any enquiries kindly contact:
Raihana Edros, PhD
rzahirah@ump.edu.my

