For updated version, please click on http://ocw.ump.edu.my

NUMERICAL METHODS & OPTIMISATION

Part I: Roots of Equation Bracketing Methods

Raihana Edros Faculty of Engineering Technology <u>rzahirah@ump.edu.my</u>

Roots of Equation By Raihana Edros http://ocw.ump.edu.my/course/view.php?id=608¬ifyeditingon=1

Communitising Technology

Chapter Description

- Aims
 - Apply numerical methods in solving engineering problem and optimisation
- Expected Outcomes
 - Calculate the root of equation by using bracketing methods
 - Graphical Method
 - Bisection Method
 - False-Position Method
- References
 - Steven C. Chapra and Raymond P. Canale (2009), Numerical Methods for Engineers, McGraw-Hill, 6th Edition

If you were given.....

$$f(x) = ax^{2} + bx + c = 0$$
$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

The value of *x* calculated are called the "roots" of equation.

The roots of equation is the value of x that makes f(x)=0.

But? $\sin x + x = 0 \implies x = ?$

How numerical methods work to solve the roots of equation?

Hence, approximate solution can be one of the alternatives.

2 kinds of approaches:

- 1) Plot the function and determine where it crosses the *x* axis, (f(x)=0).
- 2) Guessing a value of x and evaluate whether f(x) is zero.

Methods to determine roots of equation

- Bracketing methods (two initial guesses for the root are required)
 - a) Graphical method
 - b) Bisection method
 - c) False position method
- Open methods
 - a) Simple Fixed-Iteration method
 - b) Newton-Raphson Method
 - c) The secant Method

Bracketing method

- Two initial guesses for the root are required.
- These guesses must be in "bracket" or be on either side of the root.
- Graphical method
 - Plot the function f(x) and observe the value of x where f(x)=0.
 - Rough estimation

Graphical Method: Example 1

Use graphical approach to determine the drag coefficient *c* needed.

$$f(c) = \frac{667.38}{c} (1 - e^{-0.146843c}) - 40$$

Substitute various values of c into the right hand side of this eqn to compute f(c)

Bisection Method

- Bisection method is called as binary chopping where the interval is divided in half.
- The root is obtained by halving the initial guesses.
- This is then repeated to refine the estimates of the roots.
- If the f(x) change sign (+ve, -ve), the function value at the midpoint is evaluated.

Roots of Equation By Raihana Edros http://ocw.ump.edu.my/course/view.php?id=608¬ifyeditingon=1 cc BY-SA

CC DY SA

Source: https://commons.wikimedia.org/

Communitising Technology

Simple algorithm for The Bisection Method

Step 1: Choose lower (x_l) and upper (x_u) for the root such that the function changes sign over the interval. This can be checked by ensuring that $f(x_l)f(x_u) < 0$. $x_l + x_u$

Step 2: Estimate the root by evaluating

$$x_r = \frac{x_l + x_u}{2}$$

Step 3: make the following evaluation to determine in which subinterval the roots lies:

Find the pair:

- a) If $f(x_1)f(x_r) < o$, root lies in the lower interval, then $x_u = x_r$ and go to step 2.
- b) If $f(x_l)f(x_r) > 0$, root lies in the upper interval, then $x_l=x_r$, go to step 2.
- c) If $f(x_l)f(x_r) = o$, then root is x_r and terminate.

The Bisection Method: Example

- Use bisection method to solve the same problem as in the previous example (Graphical Method) with ε_s =0.5%.
- The first step in bisection method is to guess two values of the unknown (x₁ and x_u) where the function changes.
- From the graph we can see that, f(c) changes sign between 12 and 16.
- Step 1: $x_1=12$, $x_u=16$. Estimate the root xr:
- Step 2: 1st iteration for x_r=14
- >> Continue calculation till termination criteria is met.

The Bisection Method: Example

Iteration	x_l	x _u	\boldsymbol{x}_r	$\boldsymbol{\varepsilon}_{a}$ (%)	$oldsymbol{arepsilon}_{t}\left(\% ight)$
1	12	16	14		5.279
2	14	16	15	6.667	1.487
3	14	15	14.5	3.448	1.896
4	14.5	15	14.75	1.695	0.204
5	14.75	15	14.875	0.840	0.641
6	14.75	14.875	14.8125	0.422	0.219

The False-Position Method

- If $f(x_l)$ is much close to zero than $f(x_u)$, it is likely that the root is closer to x_l than x_u .
- Join this f(x_l) and f(x_u) by a straight line to get the intersection on xaxis which represent the x_r value.
- Also called as linear interpolation method.

Roots of Equation By Raihana Edros http://ocw.ump.edu.my/course/view.php?id=608¬ifyeditingon=1

f(x)

Steps of The False-Position Method

- 1. Find the values of x_l and x_u These values are evaluated using:
- 2. Compute the x_r using:

$$x_{r} = x_{u} - \frac{f(x_{u})(x_{l} - x_{u})}{f(x_{l}) - f(x_{u})} \qquad f(x_{l})f(x_{u}) < 0$$

3. a) If f(x_l)f(x_r)<0, root lies in the lower interval, then determine x_u=x_r and go to step 2.
b) If f(x_l)f(x_r)>0, root lies in the upper interval, then x_l=x_r, go to step 2.
c) If f(x_l)f(x_r)=0, then root is x_r and terminate.

Steps of The False-Position Method

4. Compute \mathcal{E}_a

$$\varepsilon_a = \left| \frac{x_r^{new} - x_r^{old}}{x_r^{new}} \right| \times 100\%$$

5. Calculation can be terminated when \mathcal{E}_a is lower than the given \mathcal{E}_s .

The False-Position Method: Example

Use the false-position method to determine the root of the same equation investigated in Example 1.

(Initiate the calculation with guesses of $x_l = 12$ and $x_u = 16$).

The False-Position Method: Example

Given

$$f(x) = -25 + 82x - 90x^2 + 44x^3 - 8x^4 + 0.7x^5$$

- Using initial guesses of $x_l=0.5$ and $x_u=1.0$, determine the root using:
 - a) Bisection method to $\varepsilon_s = 10\%$
 - b) False-position method to $\varepsilon_s = 0.2\%$

Conclusion

• The root of equation can be estimated by using bracketing methods such as graphical, bisection and false-position methods.

Roots of Equation By Raihana Edros http://ocw.ump.edu.my/course/view.php?id=608¬ifyeditingon=1

RZE/2015/BTP2412

Main Reference

Steven C. Chapra and Raymond P. Canale (2009), Numerical Methods for Engineers, McGraw-Hill, 6th Edition

Any enquiries kindly contact: Raihana Edros, PhD rzahirah@ump.edu.my

Roots of Equation By Raihana Edros http://ocw.ump.edu.my/course/view.php?id=608¬ifyeditingon=1

Communitising Technology