NUMERICAL METHODS \& OPTIMISATION

Part I: Roots of Equation Bracketing Methods

Raihana Edros
Faculty of Engineering Technology
rzahirah@ump.edu.my

Roots of Equation
By Raihana Edros
http://ocw.ump.edu.my/course/view.php?id=608\¬ifyeditingon=1

Chapter Description

- Aims
- Apply numerical methods in solving engineering problem and optimisation
- Expected Outcomes
- Calculate the root of equation by using bracketing methods
- Graphical Method
- Bisection Method
- False-Position Method
- References
- Steven C. Chapra and Raymond P. Canale (2009), Numerical Methods for Engineers, McGraw-Hill, $6^{\text {th }}$ Edition

If you were given.

$$
\begin{gathered}
f(x)=a x^{2}+b x+c=0 \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{gathered}
$$

The value of x calculated are called the "roots" of equation.

The roots of equation is the value of x that makes $f(x)=0$.

But?

$$
\sin x+x=0 \Rightarrow x=?
$$

How numerical methods work to solve the roots of equation?

Hence, approximate solution can be one of the alternatives.
2 kinds of approaches:

1) Plot the function and determine where it crosses the x axis, $(f(x)=0)$.
2) Guessing a value of x and evaluate whether $f(x)$ is zero.

Methods to determine roots of equation

- Bracketing methods (two initial guesses for the root are required)
a) Graphical method
b) Bisection method
c) False position method
- Open methods
a) Simple Fixed-Iteration method
b) Newton-Raphson Method
c) The secant Method

[^0]
Bracketing method

- Two initial guesses for the root are required.
- These guesses must be in "bracket" or be on either side of the root.
- Graphical method
- Plot the function $f(x)$ and observe the value of x where $f(x)=0$.
- Rough estimation

Graphical Method: Example 1

Use graphical approach to determine the drag coefficient c needed.

$$
f(c)=\frac{667.38}{c}\left(1-e^{-0.146843 c}\right)-40
$$

Substitute various values of c into the right hand side of this eqn to compute $f(c)$
http://ocw.ump.edu.my/course/view.php?id=608\¬ifyeditingon=1

Bisection Method

- Bisection method is called as binary chopping where the interval is divided in half.
- The root is obtained by halving the initial guesses.
- This is then repeated to refine the estimates of the roots.
- If the $f(x)$ change sign (+ve, ve), the function value at the midpoint is evaluated.

Simple algorithm for The Bisection Method

Step 1: Choose lower (x_{1}) and upper $\left(\mathrm{x}_{\mathrm{u}}\right)$ for the root such that the function changes sign over the interval. This can be checked by ensuring that $\mathrm{f}\left(\mathrm{x}_{\mathrm{I}}\right) \mathrm{f}\left(\mathrm{x}_{\mathrm{u}}\right)<0$.
Step 2: Estimate the root by evaluating

$$
x_{r}=\frac{x_{l}+x_{u}}{2}
$$

Step 3: make the following evaluation to determine in which subinterval the roots lies:
Find the pair:
a) If $f\left(x_{l}\right) f\left(x_{r}\right)<0$, root lies in the lower interval, then $X_{u}=x_{r}$ and go to step 2.
b) If $\mathrm{f}\left(\mathrm{x}_{1}\right) \mathrm{f}\left(\mathrm{x}_{\mathrm{r}}\right)>0$, root lies in the upper interval, then $\mathrm{x}_{\mathrm{l}}=\mathrm{X}_{\mathrm{r}}$, go to step 2.
c) If $f\left(x_{\mathrm{l}}\right) f\left(x_{\mathrm{r}}\right)=0$, then root is X_{r} and terminate.

The Bisection Method: Example

- Use bisection method to solve the same problem as in the previous example (Graphical Method) with $\varepsilon_{\mathrm{s}}=0.5 \%$.
- The first step in bisection method is to guess two values of the unknown (x_{1} and x_{u}) where the function changes.
- From the graph we can see that, $\mathrm{f}(\mathrm{c})$ changes sign between 12 and 16.
- Step 1: $\mathrm{x}_{\mathrm{l}}=12, \mathrm{x}_{\mathrm{u}}=16$. Estimate the root xr :
- Step 2: 1st iteration for $\mathrm{x}_{\mathrm{r}}=14$
- >> Continue calculation till termination criteria is met.

The Bisection Method: Example

Iteration	x_{l}	x_{u}	x_{r}	$\varepsilon_{a}(\%)$	$\varepsilon_{t}(\%)$
1	12	16	14		5.279
2	14	16	15	6.667	1.487
3	14	15	14.5	3.448	1.896
4	14.5	15	14.75	1.695	0.204
5	14.75	15	14.875	0.840	0.641
6	14.75	14.875	14.8125	0.422	0.219

http://ocw.ump.edu.my/course/view.php?id=608\¬ifyeditingon=1

The False-Position Method

- If $f\left(x_{l}\right)$ is much close to zero than $f\left(x_{u}\right)$, it is likely that the root is closer to x_{l} than x_{u}.
- Join this $f\left(x_{l}\right)$ and $f\left(x_{u}\right)$ by a straight line to get the intersection on x axis which represent the x_{r} value.
- Also called as linear interpolation method.

Steps of The False-Position Method

1. Find the values of x_{l} and x_{u} These values are evaluated using:
2. Compute the x_{r} using:

$$
x_{r}=x_{u}-\frac{f\left(x_{u}\right)\left(x_{l}-x_{u}\right)}{f\left(x_{l}\right)-f\left(x_{u}\right)} \quad f\left(x_{l}\right) f\left(x_{u}\right)<0
$$

3. a) If $f\left(x_{l}\right) f\left(x_{r}\right)<0$, root lies in the lower interval, then determine $x_{u}=x_{r}$ and go to step 2 .
b) If $f\left(x_{l}\right) f\left(x_{r}\right)>0$, root lies in the upper interval, then $x_{l}=x_{r}$, go to step 2 .
c) If $f\left(x_{l}\right) f\left(x_{r}\right)=0$, then root is x_{r} and terminate.
http://ocw.ump.edu.my/course/view.php?id=608\¬ifyeditingon=1

Steps of The False-Position Method

4. Compute ε_{a}

$$
\varepsilon_{a}=\left|\frac{x_{r}^{\text {new }}-x_{r}^{\text {old }}}{x_{r}^{\text {new }}}\right| \times 100 \%
$$

5. Calculation can be terminated when ε_{a} is lower than the given ε_{s}.
http://ocw.ump.edu.my/course/view.php?id=608\¬ifyeditingon=1

The False-Position Method: Example

Use the false-position method to determine the root of the same equation investigated in Example 1.
(Initiate the calculation with guesses of $x_{l}=12$ and x_{u} $=16$).
http://ocw.ump.edu.my/course/view.php?id=608\¬ifyeditingon=1

The False-Position Method: Example

Given

$$
f(x)=-25+82 x-90 x^{2}+44 x^{3}-8 x^{4}+0.7 x^{5}
$$

Using initial guesses of $x_{l}=0.5$ and $x_{u}=1.0$, determine the root using:
a) Bisection method to $\varepsilon_{\mathrm{s}}=10 \%$
b) False-position method to $\varepsilon_{\mathrm{s}}=0.2 \%$

Conclusion

- The root of equation can be estimated by using bracketing methods such as graphical, bisection and false-position methods.

Roots of Equation
By Raihana Edros
http://ocw.ump.edu.my/course/view.php?id=608\¬ifyeditingon=1

Main Reference

Steven C. Chapra and Raymond P. Canale (2009), Numerical Methods for Engineers, McGraw-Hill, th $^{\text {th }}$ Edition

Any enquiries kindly contact:
Raihana Edros, PhD
rzahirah@ump.edu.my

[^0]: http://ocw.ump.edu.my/course/view.php?id=608\¬ifyeditingon=1

