

ADVANCED ENZYME TECHNOLOGY

ENZYMES IN BIOSENSOR

by
AIZI NOR MAZILA RAMLI
Faculty of Industrial Sciences & Technology
aizinor@ump.edu.my

Chapter Name
by Main Author's Name
http://ocw.ump.edu.my/course/view.php?id=602

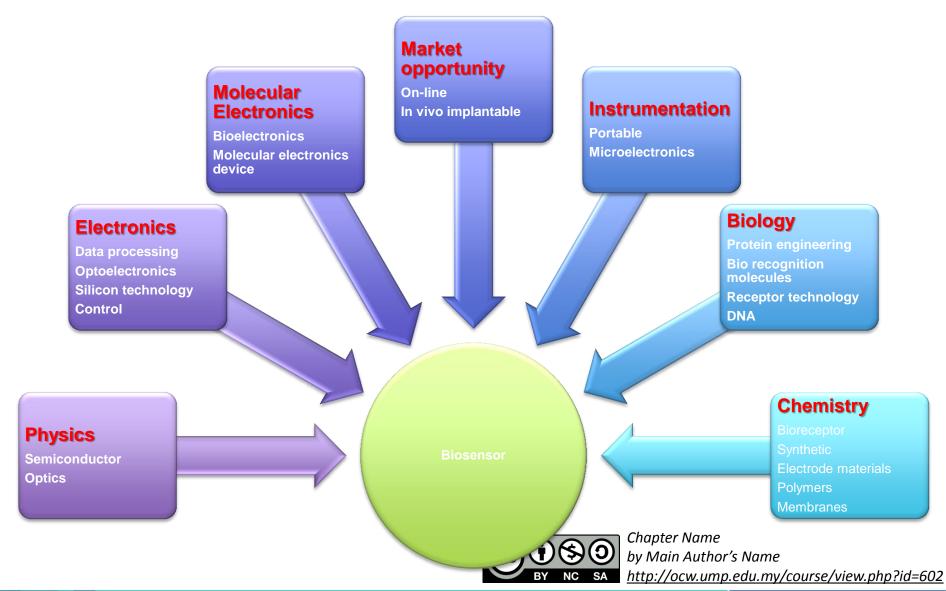
Chapter Description

- Expected Outcomes
 - To describe the application of enzymes in biosensor
 - To differentiate the element of biosensor

Content

- Introduction
- Type of sensors
- Biosensor element
- Enzyme as a biorecognition elements

INTRODUCTION



■ What is Biosensor?

a device that employs definite reactions of biochemical mediated by particular components such as isolated enzymes, immunosystems, tissues, organelles, or whole cells to identify chemical compounds typically by electrical, thermal or optical signals (IUPAC).

Biosensors as a multidisciplinary area of technology

Application and Global Market of Biosensors

Medical/Huma n Health

-Diabetes-Blood glucose metre

Bio/Pharma

- -Protein chip based system,
- -Lab chip,
- -microfluidic devices

Global Market (2016)

Food and Beverage

- rapid food quality tests
- bacteria, diseases, decay
- processing quality tests

Biodefense

- -Biochemical weapons,
- -explosives detectors
- military equipment

Environmenta

- -Biochemical Oxygen Demand test
- -Toxic pollutant test

Chapter Name
by Main Author's Name

http://ocw.ump.edu.my/course/view.php?id=602

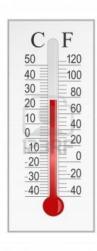
Type of sensors

Physical sensors

- Distance
- Temperature
- Pressure
- Mass

Chemical sensors

- Substances
- Physical responses or chemical


Biosensors

- Chemical substances by a biological sensing component
- Subset of chemical sensor

p?id=602

Biosensor Example: Glucometer

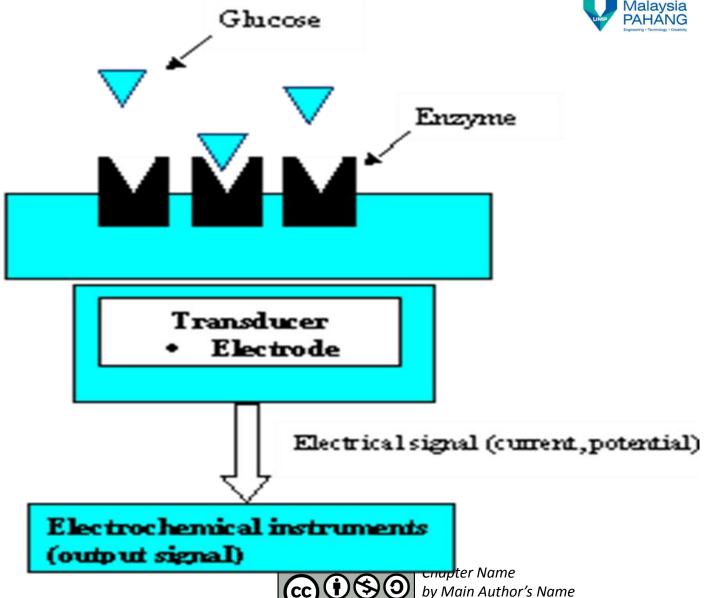
Glucometer:

- A good biosensor model.
- Used to examine blood sugar level of diabetics patient.
- Composed of strips and a display unit component.
 - Glucose oxidase enzyme is immobilised in the strips which responsible as the biosensor bioreceptor / biorecnition part.
 - The physical part or the display unit is the transducer which will record any reaction occur.

Chapter Name by Main Author's Name http://ocw.ump.edu.my/course/view.php?id=602

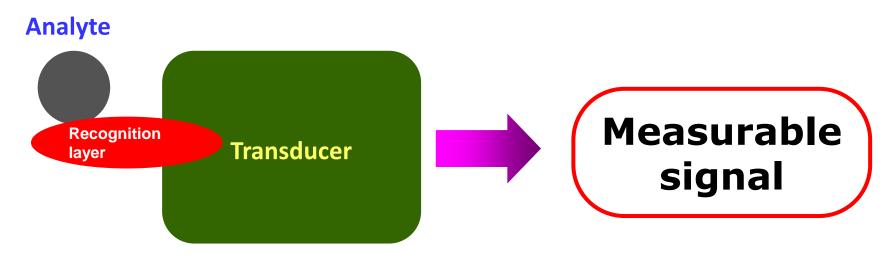
How glucometer works?

- 1. Firstly, biosensor assembly is performed by inserting the strip into the display part.
- 2. Put a drop of blood on the strip and allow it to move up the strip towards the enzyme by capillary action mechanism.
- 3. Once the blood reaches the biorecognition part (glucose oxidase) the device begines to count down from 30 seconds


so what's happenning?

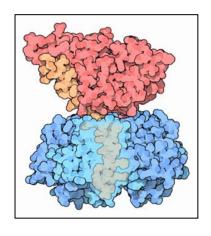
- Glucose oxidase will convert or hydrolyse any glucose contain in the blood sample into gluconic acid.
- This hydrolisys occurred will be detected by **the transducer** (physical part) and the value displayed will determine the amount of glucose contain in the blood sample.

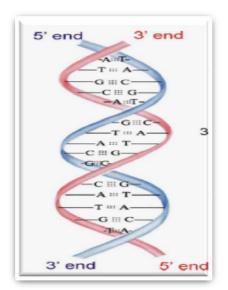
Chapter Name
by Main Author's Name
http://ocw.ump.edu.my/course/view.php?id=602



http://ocw.ump.edu.my/course/view.php?id=602

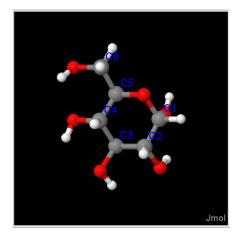
Biosensor elements


Schematic diagram of a biosensor element.


- The bio-reaction between analyte and biorecognition part converts the substrate to product.
- This reaction is detected by the transducer converts reaction into an electrical signal.
- The output from the transducer is amplified processed and displayed.

Target Analytes

What can be the analyte? DNA, Protein, Vitamin, metal ion, Glucose, Heavy metal, Sugar,


Protein

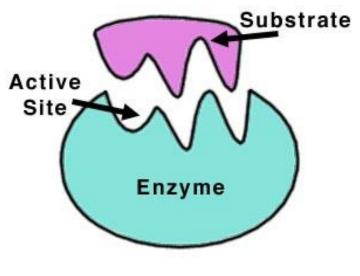
DNA

Bacteria

Glucose

Chapter Name
by Main Author's Name
http://ocw.ump.edu.my/course/view.php?id=602

1st element: The analyte

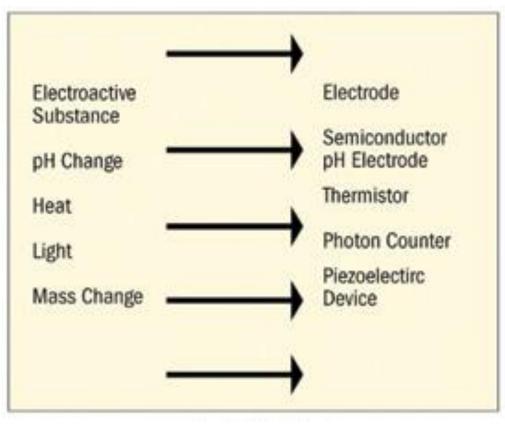

- 1. The Analyte (What do you want to detect)
- the things that need to be detected
 - Molecule Protein, toxin, peptide, vitamin, sugar, metal ion

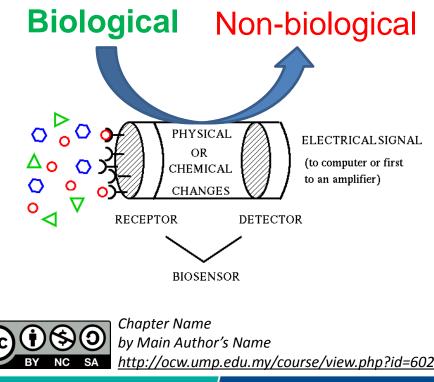
2nd element: Bioreceptor

- The important element for analyte binding.
- Need to be immobilized, stable under storage conditions and extremely specific.
- Example of bioreceptor: Microorganism

Tissue
Cell
Organelle
Nucleic Acid
Enzyme
Component
Receptor

Antibody





Chapter Name by Main Author's Name तिस्रामः अवस्थानमञ्जूषामा अधिकारी स्टिम्स स्टिम स्

3rd element: Physico-chemical Transducer

- Measure the physical change that happens with the reaction at the bioreceptor part – interface
 - converting that signal into measurable electrical output.

4th element: Detector

 Microprocessor will received any signals from the transducer that will then amplified and analyzed.

 The data will then converted to concentration units then display or/and data storage device will received the data by Main Author's Name by Main Author's Name

ttp://ocw.ump.edu.mv/course/view.php?id=602

Two categories depending on the nature of the biological recognition process

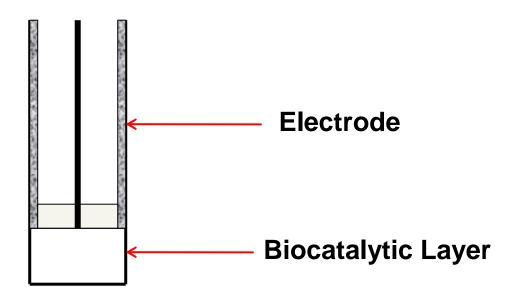
A. Biocatalytic Devices

- Use of enzymes, cells or tissues as immobilized bioreceptor

B. Affinity Sensors

- Use antibodies, membrane receptors or nucleic acids

Enzyme as a biorecognition elements


- Enzymes are proteins that can perform chemical catalysis reactions in living cells.
- Use of enzyme as biosensor is based on combination immobilization of enzyme on an electrode that will work as a transducer.
- Use of enzyme is very extremely efficient and specific.

Enzyme as a biorecognition elements

Enzymes (biocatalytic) layer immobilized on an electrode

Chapter Name
by Main Author's Name
http://ocw.ump.edu.my/course/view.php?id=602

- Normally, polymeric films, for example nation, polypyrrole, are used for enzyme entrapment purpose.
- Enzyme may be trapped
 - between electrode and a dialysis membrane
 - by mixing with carbon paste
 - by surface adsorption
 - by covalent binding
- Convenient for clinical, environmental and food samples monitorings.

Enzymes

Analyte	Enzyme	
Amygdalin	β-Glucosidase	
Asparagine	Asparaginase	
Cholesterol	Cholesterol oxidase	
Esters	Chymotrypsin	
Glucose	Glucose oxidase	
H_2O_2	Catalase	
Lipids	Lipase	
Penicillin G	Penicillinase	
Pepti des	Trypsin	
Starch	Amylase	
Sucrose	Invertase	
Urea	Urease	
Uric acid	Uricase	

Examples of Biosensors

Company	Analyte	Technology Basis
Autoteam GmbH (Berlin, Germany)	Biological oxygen demand (BOD)	Microbial electrode
Bio-Technical Resources (Manitowoc, WI, USA)	As, Pb, Cd, polychlorinated benzenes (PCB's)	Fluorescence from luminescent bacteria
Life Scan (Milpitas, CA, USA)	Blood Glucose	Enzyme (glucose oxidase/peroxidase)
MediSense Inc. (Waltham, MA, USA)	Blood glucose (ExacTech [®] , Companion 2 [®])	Amplified enzyme electrode
Pharmacia Biosensor AB (Uppsala, Sweden)	Multiple antigens (BIAcore®)	Antibody-coated surface plasmon resonance-based instrument
YSI (Yellow Springs, OH, USA)	Sugars, alcohol, starch	Enzyme electrodes
Molecular Devices Corp (Menlo Park, CA, USA)	Total DNA (Threshold®); drugs, toxins (Cytosensor®)	Binding protein/antibody-based assay on a light addressable potentiometric transducer; pH changes in whole cells
Oriental Electric Co., LTD (Tokyo, Japan)	ATP degradation (fish freshness indicator)	Enzyme electrode
Ohmicron Corp. (Newtown, PA, USA)	Herbicides, PCBs, polyaromatic hydrocarbons (PAHs) (SmartSense®)	Enzyme immunoassays on chemiresist (capacitance) transducers

