FACULTY OF INDUSTRIAL

SCIENCES \& TECHNOLOGY PAHANG

ELECTRICITY, MAGNETISM \& OPTICS

by Muhammad Hafiz bin Mazwir

CH07: MAGNETIC FORCES AND FIELDS

1. A beam of protons moves at $3.0 \times 10^{5} \mathrm{~m} / \mathrm{s}$ through a uniform 2.0 T magnetic field directed along the positive z -axis. The velocity the proton beam lies in the $x z$-plane and is directed at 30° to the $+z$-axis. Find the force on the proton beam.
2. A magnetic field exerts a force of $8.0 \times 10^{-14} \mathrm{~N}$ towards the west on a proton moving vertically upward at a speed of $5.0 \times 10^{6} \mathrm{~m} / \mathrm{s}$. Determine the magnitude and direction of the magnetic field in this region.
3. A square loop of wire with side $l=5.0 \mathrm{~cm}$ is in a uniform magnetic field $B=0.16 \mathrm{~T}$. Calculate the magnetic flux in the loop
(i) when B is perpendicular to the face of the loop.
(ii) when B is at an angle of 30° to the area A of the loop.
4. A straight horizontal copper rod carries a current of 50.0 A from west to east in a region between the poles of a large electromagnet. In this region, there is a horizontal magnetic field toward the northeast (that is, 45° north of east) with magnitude 1.20 T .
(i) Find the magnitude and direction of the force on a 1.00 m section of rod.
(ii) While keeping the rod horizontal, determine the orientation of the rod to maximize the magnitude of the force, and calculate the force in this case.
5. A long horizontal wire carries a current of 6.0 A in a direction 35° east of north, in a region with uniform 0.04 T magnetic field horizontally to the east. Determine the magnitude and direction of the force on each centimeter of wire.
