

Electricity, Magnetism & Optics

Magnetic Forces and Fields

by Muhammad Hafiz bin Mazwir Faculty of Industrial Sciences & Technology muhammadhafiz@ump.edu.my

Chapter Description

• Aims

Students will understand the nature of magnetic field and magnetic forces, and how they are different to the electric field and forces

• Expected Outcomes

- Able to understand the properties of magnets
- Able to differentiate magnetic field lines and electrical field line
- Able to Analyse magnetic forces on current carrying conductors

Content

- 7.1 Magnetism
- 7.2 Magnetic Field

Source: Berndt Meyer, Wikimedia Commons

- 7.3 Magnetic Field Lines and Magnetic Flux
- 7.4 Magnetic Force on Straight Conductor

7.1 Magnetism

- First observed around 2500 years ago in iron ore near the city called Magnesia (now Manisa, Turkey). This is an example of a permanent magnet.
- The interactions of permanent magnets or compass needles can be described in terms of magnetic poles, *north pole* and *south pole* (N and S)
- Object which contain iron is attracted to either pole of the magnet
- Analogous to electrical field, the magnet creates a magnetic field around it and the object responds to the field.

Communitising Technology

Magnetic Poles

- This concept of TWO magnetic poles (N and S) may appear similar to the concept of TWO electric charges (+ve and –ve)
- BUT, this is misleading. While isolated positive or negative charge can exist, there is no experimental evidence that a single isolated magnetic pole exist
- For example, cutting a magnetic bar into two WILL NOT separate the dipole into two single monopoles, but instead each of the piece will have their own dipoles
- However, there is a relationship between magnetism to moving charge (current) discovered by Oersted, and this will be discussed in the next chapter

http://ocw.ump.edu.my/course/view.php?id=32

Magnetic Forces and Fields by Muhammad Hafiz bin Mazwir

7.1 Magnetic Field

- Based on the observation by Oersted, it is known that magnetic field also exerts force (just like electric field!)
- Just like chapter 1, we will focus on the force due to magnetic field in this chapter. The next chapter will focus on creating magnetic field.
- Magnetic field is also a *vector field*
- The symbol is \vec{B} and direction is towards S pole
- The SI unit for magnetic field is **Tesla** (T) in honor of Nikola Tesla
- Another unit is sometimes used, **Gauss** ($1 \text{ G} = 10^{-4} \text{ T}$)
- $1 T = 1 N \cdot A/m = 10^4 G$

Electricity vs Magnetism

Electricity	Magnetism	
 A distribution of electric charge at rest creates an electric field <i>E</i> in the surrounding space The electric field exerts a force <i>F</i> = q<i>E</i> on any other charges Vector Field Single monopole exist (positive charges and negative charges can exist on their own without the other) 	 A moving charge or current creates a magnetic field (in addition to its electric field) The magnetic field exerts a force F on any other moving charges or current Vector Field Single monopole does not exist (a magnet WILL ALWAYS have a north pole and a south pole) 	

Factor (tesla)	SI prefix	Value (SI units)	Item
10 ⁻¹²	picotesla	100 fT to1 pT	Human brain magnetic field
10 ⁻⁵	microtesla	31 μT	Strength of Earth's magnetic field at 0° latitude (on the equator)
		58 μΤ	Strength of Earth's magnetic field at 50° latitude
10-3	millitesla	5 mT	The strength of a typical refrigerator magnet
10 ⁰	tesla	1 - 2.4 T	Coil gap of a typical loudspeaker magnet.
		~ 1.25 T	Strength of a modern neodymium–iron–boron (Nd ₂ Fe ₁₄ B) rare earth magnet. A coin-sized neodymium magnet can lift more than 9 kg, erase credit cards.
		9.4 T	Modern high resolution magnetic resonance imaging system
10 ¹		45 T	Strongest continuous magnetic field yet produced in a laboratory (USA)
10 ²		730 T	Strongest pulsed magnetic field yet obtained in a laboratory, destroying the equipment used, but not the laboratory itself (Japan)
10 ⁶	megatesla	1 - 100 MT	Strength of a neutron star

Magnetic Force on Moving Charges

- There are FOUR characteristics of the magnetic force on a moving charge
 - 1. Magnitude of the force is proportional to the magnitude of the charge
 - 2. Magnitude of the force is also proportional to the magnitude of the magnetic field
 - 3. Magnitude of the force depends on the velocity of the moving charge
 - 4. Direction of the force is always perpendicular to both magnetic field, \vec{B} and velocity, \vec{v}
- From experiments, it is found that the magnitude of the force

$$F = |q| vB \sin \phi$$

Magnetic Force: Vector form

- However, the relation $F = |q| vB \sin \phi$ is ambiguous on the direction of the force.
- There are always two directions, opposite to each other, that are both perpendicular to the plane of \vec{B} and \vec{v}
- Therefore, a vector product can be used to define this force.

Source: Maschen, Wikimedia Commons

 $\vec{F} = q\vec{v} \times \vec{B}$

(magnetic force on a moving charged particle)

7.3 Magnetic Field Lines and Magnetic Flux

- Just as the Earth's magnetic field shown before, any magnetic field can be represented by magnetic field lines.
- The idea is the same as for the electric field lines
- The lines are drawn tangential to the magnetic field vector \vec{B}
- The direction is from the north pole to south pole (N \rightarrow S)
- Lines for stronger field magnitude is drawn closer together, and vice versa
- Field lines never intersect!

Magnetic Flux

- The magnetic flux, $\Phi_{\rm B}$ through a surface can be defined just like electric flux $\Phi_{\rm E}$
- The surface is divided into infinitesimally small area $d\vec{A}$ first.
- For each dA, the component of the magnetic field perpendicular to the area, B_{\perp} is determined, and that is $B_{\perp} = B \cos \phi$, where ϕ is the angle between the direction of \vec{B} and a line perpendicular to the surface

Gauss's law for Magnetism

- Magnetic flux is a *scalar* quantity.
- If \vec{B} is uniform over a plane surface with total area A, the equation can be simplified into

$$\Phi_B = B_\perp A = BA\cos\phi$$

(magnetic flux for a uniform magnetic field)

- The SI unit for magnetic flux is Weber (Wb)
- $1 \text{ Wb} = 1 \text{ T} \cdot \text{m}^2 = 1 \text{ N} \cdot \text{m/A}$
- Sometimes, \vec{B} is called magnetic flux density
- In Gauss's law, the total *electric flux through a closed surface* is proportional to the total electric charge enclosed by the surface.
- But for magnetism, since there are such thing as magnetic monopoles, the total magnetic flux through any closed surface must be zero!

$$\oint \vec{B} \cdot d\vec{A} =$$
 (magnetic flux through any
closed surface) prices and Fields
by Wallanimad Hafiz bin Mazwir
http://ocw.ump.edu.my/course/view.php?id=3

7.4 Magnetic Force on a Straight Conductor

- Magnetic field exerts force on a moving charge. Current is a moving charge.
 - → Magnetic field exerts force on a straight conductor!

Deriving Magnetic Force on Conductor

- The expression for force on current-carrying conductor can be derived from $\vec{F} = q\vec{v} \times \vec{B}$
- Imagine a conductor with cross-sectional area A and length $\boldsymbol{\ell}$
- The charge is assumed to be positive, and the velocity is the drift velocity, \vec{v}_d perpendicular to \vec{B}
- The number of charges per unit volume is n; therefore, the number of charges in this particular conductor will be nAl
- Thus, the total force for ALL the charges in the conductor is

$$F = (nA\ell)(qv_d B) = (nqv_d A)(\ell B)$$
$$= I\ell B$$

Magnetic Forces and Fields by Muhammad Hafiz bin Mazwir <u>http://ocw.ump.edu.my/course/view.php?id=32</u>

Source: 老陳, Wikimedia Commons

Magnetic Force on Conductor: Vector Form

- The equation is only valid for drift velocity that is perpendicular to \vec{B}
- If \vec{B} is in another direction, only the component that is perpendicular to the drift velocity exerts the force on the conductor.
- Therefore, taking ϕ as the angle between \boldsymbol{B} and the current,

 $F = I\ell B_{\perp} = I\ell B\sin\phi$

- The force is always perpendicular to both the conductor and the magnetic field, with the direction determined by the same right-hand rule used for a moving charge before.
- Using vector notation,

 $\vec{F} = I \vec{\ell} \times \vec{B}$

(magnetic force on a straight wire segment)

Conclusion

- Magnetic Field
 - Magnetic field is similar to electric field, that is they are vector field.
 - The direction of magnetic field is from N pole towards S pole
- Magnetic Force
 - Magnetic exerts force on any moving charge, such as moving charged particles like protons or electrons, and also on current carrying conductor

References

- University Physics 14th Edition, Hugh D. Young, Roger A. Freedman, IOP Publishing Ltd, 2015
- Physics for Scientists & Engineers 4th Edition, Douglas C. Giancoli, Pearson, 2008
- Physics for Scientists & Engineers 9th Edition, Raymond A. Serway & John W. Jewett, Cengage Learning, 2014

Thank you!

Next chapter: Sources of Magnetic Fields

Magnetic Forces and Fields by Muhammad Hafiz bin Mazwir http://ocw.ump.edu.my/course/view.php?id=32

Communitising Technology

Authors Information

Muhammad Hafiz bin Mazwir Siti Aisah binti Harun

Material Technology Programme, Faculty of Industrial Sciences & Technology Universiti Malaysia Pahang

