

FACULTY OF INDUSTRIAL SCIENCES & TECHNOLOGY MATERIAL TECHNOLOGY PROGRAMME

ELECTRICITY, MAGNETISM & OPTICS

by Muhammad Hafiz bin Mazwir

CH06: DIRECT CURRENT CIRCUIT

1. Find the equivalent resistance and the current in each resistor shown in figure 6.1. The source of emf has negligible internal resistance.

Figure 6.1

- 2. Two identical light bulbs, each with resistance $R = 2 \Omega$, are connected to a source with $\mathscr{E} = 8 \text{ V}$ and negligible internal resistance. Find the current through each bulb, the potential difference across each bulb, and the power delivered to each bulb if the bulb are connected
 - (i) in series, and
 - (ii) in parallel.
 - (iii) Suppose one of the bulbs burns out; that is, the filament breaks and current can no longer flow through it. Determine what happens to the other bulb in the series case, and in the parallel case.
- 3. In the circuit shown below, a 12 V power supply with unknown internal resistance r is connected to a run-down rechargeable battery with unknown emf \mathscr{E} and internal resistance 1 Ω , and to an indicator light bulb of resistance 3 Ω carrying a current of 2 A. The current through the run-down battery is 1 A in the direction shown.
 - (i) Find r, \mathscr{E} and the current I through the power supply.
 - (ii) Calculate the power delivered by the 12 V power supply and by the battery being recharged.
 - (iii) Determine the power dissipated in each resistor.

