

FACULTY OF INDUSTRIAL SCIENCES & TECHNOLOGY MATERIAL TECHNOLOGY PROGRAMME

ELECTRICITY, MAGNETISM & OPTICS

by Muhammad Hafiz bin Mazwir

CH01: ELECTRIC CHARGE & ELECTRIC FIELD

- 1. A small object has charge of -5.27×10^{-9} C. Calculate the amount of excess electrons on the object.
- 2. Two balls hanging freely from the ceiling are electrically attracted to each other. Determine whether the balls are charged, and if they are, determine the charge sign.
- 3. All objects with mass, no matter how small the mass is, are attracted to each other due to gravitational force. An α -particle is the nucleus of a helium atom (${}_{2}^{4}$ He). Compare the magnitude of the electric repulsion between two α particles with that of the gravitational attraction between them. Determine whether the two α particles will be attracted together due to gravity or repelled due to the electrostatic force.
- 4. Two charged objects are placed on the x-axis of Cartesian coordinate system. The first object carries charge of -3.7 μ C and is located at origin (0, 0), while the second object carries charge of 6.8 μ C at (4.5, 0).
 - (i) Calculate the electrostatic force exerted on the second object by the first one.
 - (ii) Another object with charge 1.2 μ C is placed at (3.3, 0). Determine the electrostatic force exerted on the third charge.

(Tip: Do not forget to include the direction of the force!)

- 5. An α -particle is placed at the origin of the Cartesian coordinate system, (0, 0). Find the electric field at points:
 - (i) (0, 6)
 - (ii) (3, 0)
 - (iii) (3, 6) (*Tip: Do not forget to include the direction of the electric field!*)

