

Chapter 13

Serial Interfacing

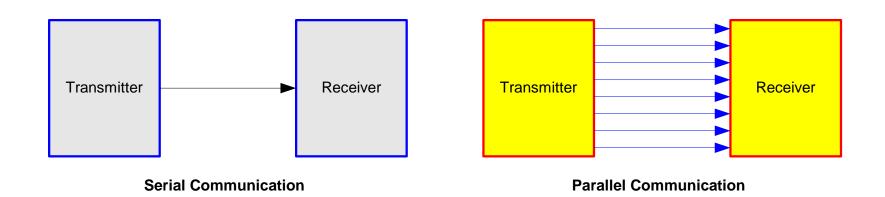
Expected Outcomes

- Explain the fundamental idea of operation of serial interface
- List and describe type of serial interface
- Identify the serial interface characteristic such as data framing and baud rate
- Explain and describe the role line driver in serial interface
- Write a program using serial interface

Introduction

Computers transfer data in two ways

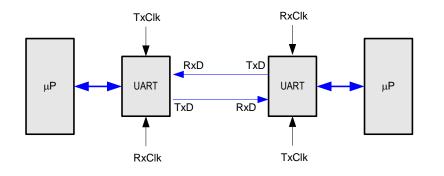
Parallel

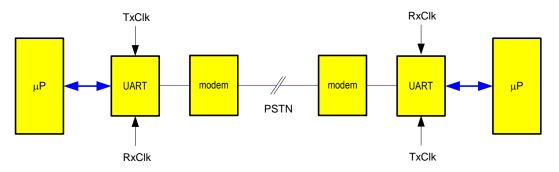

- Parallel data transfers often 8 or more lines are used to transfer data to a device that is only a few feet away such as printers and hard disks
- Parallel requires a short amount of time to transfer data
- However, the distance of the devices are limited and impractical to be used in a long distance
- The parallel is complex to be designed and prone to error
- In serial method, the data is sent one bit at a time

Parallel vs Serial

Computers transfer data in two ways Parallel Serial

Serial Communication


- Serial data communication uses two methods
 - Asynchronous
 - Synchronous
- The synchronous transfers a block of data (characters) at a time, thus requiring the transmitter and receiver to have the same clock system
- The asynchronous transfers a single byte at a time
- For a small system, normally asynchronous method is preferred as the design is simple and cheap
- Specialized chips are designed for both method: UART (Universal Asynchronous Receiver and Transmitter) and USART
- M68000 family peripheral MC68681 DUART
- M6800 family peripheral MC6850 ACIA



UART

Some of the possible connections

Universiti Malaysia PAHANG Erginering - Technology - Orestivy

DUART 68681

The MC68681 (dual universal asynchronous receiver/transmitter) is part of M68000 peripheral using asynchronous bus structure

Features

- 2 independent full-duplex asynchronous channels
- Maximum data transfer rate up to 1 MB/s
- Programmable data format
- Programmable channel mode
- Independent programmable baud rate
- Versatile interrupt system
- Multi-function 16-bit programmable counter/timer
- Multi-function 8-bit output port and etc...

ACIA 6850

- Alternatively, M6800 family peripheral such as ACIA 6850 can be used in serial transmission
- Asynchronous Communication Interface Adapter (ACIA 6850) is widely used due to cost and simplicity

Features

Data lines (D0-D7)
Chip selects (CS0,CS1 and CS2*)
Enable (E)
Read and Write (R/W*)
Register Select (RS)
Received Data (RxD) and Transmit Data (TxD)
Transmit Clock (TxClk) and Receive Clock (RxClk)
Modem Control Line (CTS*, RTS*, DCD*)

Data Framing

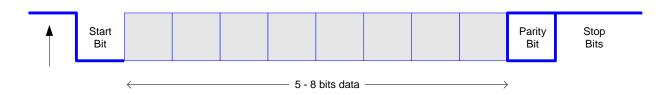
Before transmission each character must be framed

Data framing for asynchronous method

1 start bit

Always "0" to indicate the beginning of character

5-8 bits data

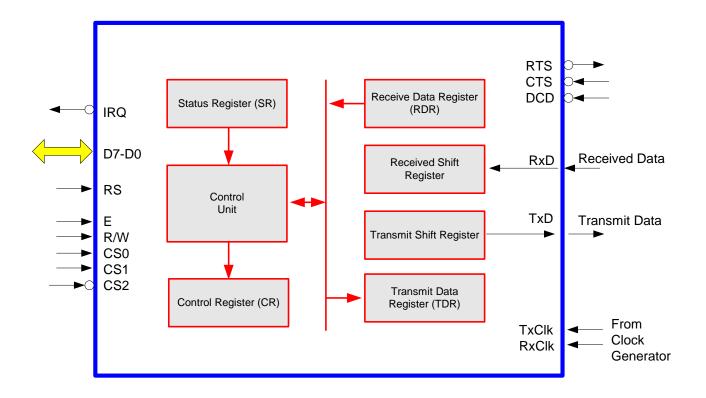

It begins with LSB

1 parity bit (optional)

Can be odd or even parity depending on the programmer

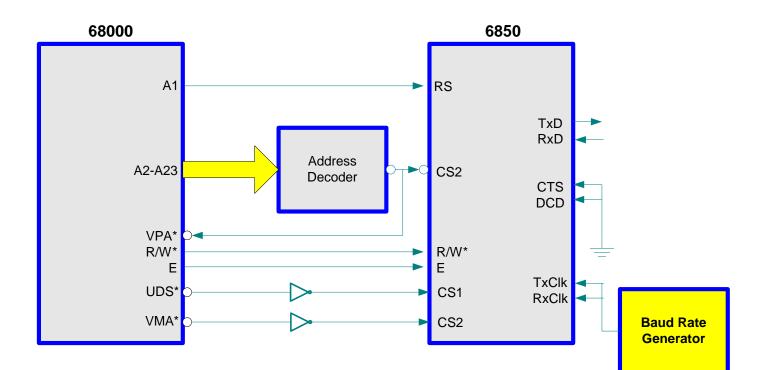
I or more stop bits

Always "1" to indicate the end of character



ACIA 6850

Internal architecture of ACIA 6850



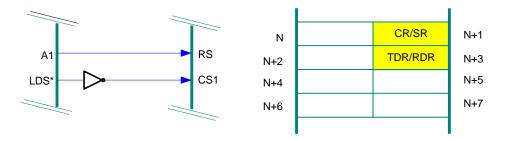
ACIA 6850

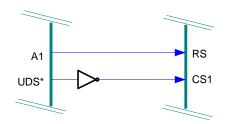
Baud rate generator circuit : Baud rate generator chips such as MC14411or oscillator circuit

NMKNYFKEEUMP

Registers

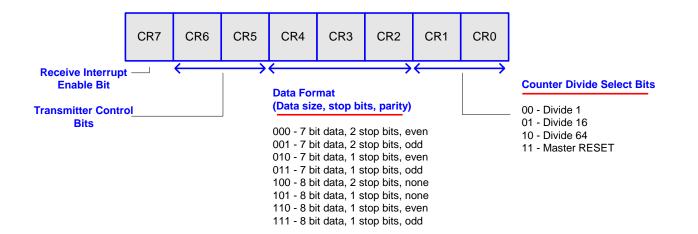
There are 4 registers
 Control Register (CR)
 Status Register (SR)
 Transmit Data Register (TDR)
 Receive Data Register (RDR)


RS	R/W	Name	Register
0	0	CR	Control Register
0	1	SR	Status register
1	0	TDR	Transmit Data Register
1	1	RDR	Receive Data Register



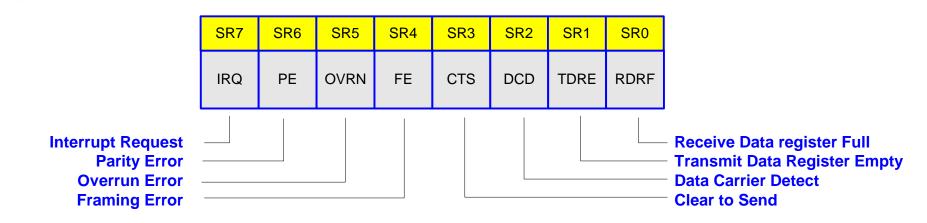
Registers

The address register depends on Address decoder UDS*/LDS*



Control Register

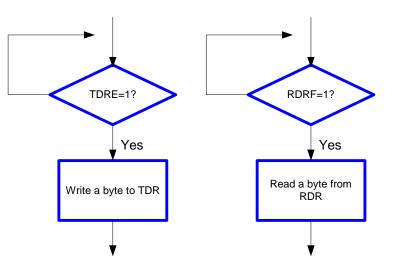
The control register (CR) controls the function of the receiver, transmitter, interrupt enables, and the Request-to-Send peripheral/modem control output



Status Register

Information on the status of ACIA is available by reading the Status Register (SR)

- ACIA must be initialize in order to operate properly
- Four parameter must be set between transmitter and receiver
 - Data rate
 - Number of bits
 - Type of parity
 - Number of stop bits


Example: Write a routine to initialize ACIA with the following characteristic; 8 bits, 1 stop bit, no parity. Assume clock frequency is 153.6 kHz

INIT MOVE.B	#3,ACIACR	;RESET
MOVE.B	#\$15,ACIACR	;Set CR
MOVE.W	#\$400 , D0	;Delay
LOOP SUBQ.W	#1,D0	
BNE	LOOP	
RTS		

- In order to transmit or receive data, TDRE and RDRF must be monitored
- If TDR is empty, TDRE is set, allowing new data to be transmitted
- Similarly, if RDR is full, RD is set and a new data must be read

Example: Write a routine to send a character 'A' continuously

SCAN BTST.B #1,ACIASR ;TDRE = 1?
BEQ SCAN ;No, scan again
MOVE.B #'A',ACIADR ;Load `A' into DR
BRA SCAN ;Repeat sending
RTS

Example: Read a byte from Data Receive register and store in D0

SCAN BTST.B #0, ACIASR ; Read Status Register BEQ SCAN RTS

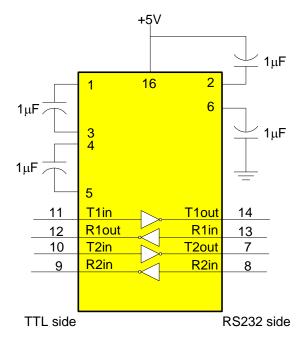
- ; RDRF=0,scan again
- MOVE.B ACIADR, D0 ; Store a byte in D0

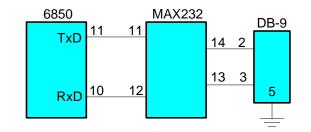
Line Driver

- The 6850 provides two pins (TxD and RxD) to be used specifically to transfer and receive data serially
- Since the pins are TTL compatible, they require line driver to allow data to be transmitted at a longer distance
- The most common line drivers are RS-232, RS422 and RS423
- However, RS-232 (EIA 232) is widely used as it s the simplest and the cheapest line driver
- Some examples of the ICs that provide the EIA-232 line driver are MAX 233, MAX 232, MC145407 or a pair of MC1488/MC1489

EIA-232

- Widely used for serial interface standard
- Logic "1" is represented by -30 to -25 V and logic "0" is +3 to +25 V allowing the communication to be up to 10 meter
- There are two type of RS232 connectors; DB-25 and DB-9


Pin	Description	Pin	Description
1	Data Carrier Detect (DCD)	6	Data Set Ready (DSR*)
2	Received Data (RxD)	7	Request To Send (RTS*)
3	Transmitted Data (TxD)	8	Clear To Send (CTS*)
4	Data Terminal Ready (DTR)	9	Ring Indicator (RI)
5	Signal Ground (GND)		



EIA-232

MAX232 internal architecture

Baud Rate

	Standard
To ensure a proper communication, the	baud rate
	110
baud rate of the system must match the	150
baud rate of the PC's COM port	300
	600
The baud rate for the system depends on	1200
baud rate generator (TxClk and RxClk)	2400
	4800
	9600
	19200
	28800

Universiti Malaysia PAHANG Ergineergi - Technology - Greativy

Self-Test

Exercise

Explain the advantage of using serial transmission compare to parallel transmission

Exercise

Describe the important of using line driver such as EIA232 or RS422

Exercise

What is the difference between MAX232 and MAX233?

Exercise

State and elaborate the pin requirement for asynchronous transmission

Universiti Malaysia PAHANG Expression - Technology - Greativy

Self-Test

Exercise

Briefly explain the procedure for sending a byte of data using ACIA 6850

Exercise

State and explain bits (TDRE and RDRF) in status register

Exercise

What is the difference between synchronous and asynchronous transmission

Exercise

A 1024 x 512 x 16-grey-level image is to be transmitted to a printer using serial communication at the rate of 19.6 kbps. The data format is one start bit, 8 data bit and one stop bit. How long does it takes to transmit the image?

