COMPUTER AIDED ENGINEERING DESIGN (BFF2612)

BASIC MATHEMATICAL CONCEPTS IN CAED

by

Dr. Mohd Nizar Mhd Razali

Faculty of Manufacturing Engineering
mnizar@ump.edu.my

COORDINATE SYSTEM

RIGHT HANDED
Coordinate System

LEFT HANDED
Coordinate System

We adopt RIGHT HANDED

Coordinate System.

PARAMETRIC SYSTEM

Most CAD software use parametric system. Parametric curves:

- Each coordinate of a point on a curve is represented as a function of one or more parameters.
- The position vector of a point on the curve is fixed by the value of the parameter.
- It is well suited for computations and display.

Limitations of non-parametric representation:

1. If the slope of a curve at a point is vertical, its value becomes infinity. It is difficult for computation and program ($\mathrm{y}=\mathrm{mx}+\mathrm{c}$).
2. Shapes of engineering objects are independent to any coordinate system.
3. If the curve is to be displayed as a series of points, straight line segments, the computations is extensive.

Representations of Geometry (2D and 3D Shtipes)

Computer Aided Engineering Design: Dr Nizar

Non-Parametric Representations:

Circle (2D):
$x^{2}+y^{2}=R^{2}$ Implicit
$y= \pm \sqrt{R^{2}-x^{2}} \quad$ Explicit

Sphere (3D):
$x^{2}+y^{2}+z^{2}=R^{2}$

Plane (3D):
$A x+B y+C z=D$

Representations of Geometry (2D and 3D Shapes)

Parametric representations:

Circle

$$
\begin{aligned}
& x=R \cos \theta \\
& y=R \sin \theta \\
& 0 \leq \theta \leq 2 \pi
\end{aligned}
$$

Sphere

$$
\begin{gathered}
x=r \cos \emptyset \cos \theta \\
y=r \cos \emptyset \sin \theta \\
z=r \cos \emptyset \\
-\frac{\pi}{2} \leq \emptyset \leq \frac{\pi}{2}, 0 \leq \theta \leq 2 \pi
\end{gathered}
$$

Line

$$
\begin{aligned}
& x(t)=x_{1}+\left(x_{2}-x_{1}\right) t \\
& y(t)=y_{1}+\left(y_{2}-y_{1}\right) t \\
& z(t)=z_{1}+\left(z_{2}-z_{1}\right) t
\end{aligned}
$$

CALCULATION EXAMPLE OF PARAMETRIC AND NON PARAMETRIC

Comparison of non parametric and parametric representations for a circle in the first quadrant

- Non parametric representation for unit circle in first quadrant ($\mathrm{R}=1$):

$$
y=+\sqrt{1-x^{2}} \quad 0 \leq \mathrm{x} \leq 1
$$

- Parametric form for unit circle

$$
\begin{gathered}
x=\cos \theta \\
y=\sin \theta \\
P(\theta)=\left[\begin{array}{ll}
x & y
\end{array}\right]=\left[\begin{array}{ll}
\cos \theta & \sin \theta
\end{array}\right] \\
0 \leq \theta \leq 2 \pi
\end{gathered}
$$

CALCULATION EXAMPLE OF PARAMETRIC AND NON PARAMETRIC

Determination of a point on a parametric curve.
Determine the value of y for a given x
e.g. $x=0.5, R=1$ for unit circle

Explicit non parametric representation

$$
y=\sqrt{1-x^{2}}=\sqrt{1-0.5^{2}}=\sqrt{0.75}=0.866
$$

Parametric representation

$$
\begin{aligned}
& x=\cos \theta \\
& y=\sin \theta
\end{aligned}
$$

First solve for the parameter θ in x

$$
\theta=\cos ^{-1}(x)=\cos ^{-1}(0.5)=60^{0}
$$

$y=\sin \left(60^{0}\right)=0.866$

For more complex parametric
representations => iterative techniques

Parametric Expression of Curve

Curve

$$
\begin{aligned}
& x(t)=f_{x}(t) \\
& y(t)=f_{y}(t) \\
& z(t)=f_{z}(t)
\end{aligned}
$$

Functions of 1 parameter t

$$
0 \leq t \leq 1
$$

Example:

Parametric Expression of Surface

Surface

$$
\begin{aligned}
& x(u, v)=f_{x}(u, v) \\
& y(u, v)=f_{y}(u, v) \\
& z(u, v)=f_{z}(u, v)
\end{aligned}
$$

Functions of 2 parameters u, v

Parametric Expression of Solid

Solid

$$
\begin{aligned}
& x(u, v, w)=f_{x}(u, v, w) \\
& y(u, v, w)=f_{y}(u, v, w) \\
& z(u, v, w)=f_{z}(u, v, w)
\end{aligned}
$$

Functions of 3 parameters u, v, w

CURVE CATEGORIES

Two categories of curves represented parametrically:

1. Analytic. Described by analytical equations. Example lines, circles, conics.
2. Synthetic. Described by sets of data points, such as splines and Bezier curves. Provide greater flexibility and control of a curve shape by changing the positions of the control points. Especially applied for curves and surfaces.

ANALYTIC CURVE

Circle

$$
\begin{gathered}
x=x_{c}+R \cos \theta \\
y=y_{c}+R \sin \theta \\
z=z_{c}
\end{gathered}
$$

Centre of circle is $\left(x_{c} y_{c} z_{c}\right)$, radius is R and $0 \leq \theta \leq 2 \pi$

ANALYTIC CURVE

Ellipse

$$
\begin{gathered}
x=x_{c}+A \cos \theta \\
y=y_{c}+B \sin \theta \\
z=z_{c}
\end{gathered}
$$

Centre of ellipse is $\left(x_{c} y_{c} z_{c}\right)$ and $0 \leq \theta \leq 2 \pi$

SYNTHETIC CURVE

- Parametric cubic polynomial curves (Hermite curves)
- Bezier curves
- Cubic spline curves
- B-spline curves

Parametric cubic polynomial curves (Hermite curves)

A cubic curve may equally well be defined to fit two points and two slope conditions at the points.

Parametric cubic polynomial cu ${ }^{\text {Unvesic }}$ (Hermite curves)

The parametric equation of a cubic spline segment is given by:

$$
P(u)=\sum_{i=0}^{3} C_{i} u^{i} \quad 0 \leq u \leq 1
$$

Where u is the parameter and C_{i} are the polynomial (also called algebraic) coefficients. In scalar form this equation is written as:

$$
\begin{aligned}
& x(u)=C_{3 x} u^{3}+C_{2 x} u^{2}+C_{1 x} u+C_{0 x} \\
& y(u)=C_{3 y} u^{3}+C_{2 y} u^{2}+C_{1 y} u+C_{0 y} \\
& z(u)=C_{3 z} u^{3}+C_{2 z} u^{2}+C_{1 z} u+C_{0 z}
\end{aligned}
$$

We have 12 unknowns and we can use Lagrange interpolation to solve these equations with four points.

In vector form:

$$
\begin{equation*}
P(u)=C_{3} u^{3}+C_{2} u^{2}+C_{1} u+C_{0} \tag{a}
\end{equation*}
$$

The tangent vector (slope) of the curve is:

$$
\begin{equation*}
P^{\prime}(u)=3 C_{3} u^{2}+2 C_{2} u+C_{1} \tag{b}
\end{equation*}
$$

Parametric cubic polynomial curves (Hermite curves)

Using the end points p_{0} and p_{1}, and the end slopes $p_{0}{ }^{\prime}$ and $p_{1}{ }^{\prime}$, we can substitute in Equations (a) and (b) to derive the unknowns. It is usual to assign $u=0$ and $u=1$ to the two ends of the segment. Thus:

$$
\begin{gathered}
p_{0}=C_{0} \\
p_{0}=C_{1} \\
p_{1}=C_{3}+C_{2}+C_{1}+C_{0} \\
p_{1}{ }^{\prime}=3 C_{3}+2 C_{2}+C_{1}
\end{gathered}
$$

Solving for C_{0} to C_{3} we obtain:

$$
\begin{gathered}
C_{0}=p_{0} \\
C_{1}=p_{0}{ }^{\prime} \\
C_{2}=3\left(p_{1}-p_{0}\right)-2 p_{0}{ }^{\prime}-p_{1}{ }^{\prime} \\
C_{3}=2\left(p_{0}-p_{1}\right)+p_{0}{ }^{\prime}+p_{1}{ }^{\prime}
\end{gathered}
$$

Thus by substitution in Equation (a), we obtain (general form of a Hermit cubic polynomial:

- The curves controlled by its defining points, the curve is always tangent to the first and last polygon segments.
- The use of points and tangent vectors to provide boundary values for curves is not attractive for interactive design, because the user may not (c).

Bezier Curves

Bezier used a control polygon for curves. The mid vertices (control points) are defined to be $1 / 3$ of the way along the tangent vectors.

$$
\begin{array}{cc}
\text { Hermite curves } & \text { Bezier curves } \\
\hline p_{0} & p_{0} \\
p_{1} & p_{3} \\
\\
p_{0}^{\prime}=3\left(p_{1}-p_{0}\right) \\
p_{3}^{\prime}=3\left(p_{3}-p_{2}\right)
\end{array}
$$

Substitute these into Equation below (Hermite curves) and gathering terms:

$$
P(u)=p_{0}\left(1-3 u^{2}+2 u^{3}\right)+p_{1}\left(3 u^{2}-2 u^{3}\right)+p_{0}{ }^{\prime}\left(u-2 u^{2}+u^{3}\right)+p_{1}{ }^{\prime}\left(-u^{2}+u^{3}\right)
$$

We obtain:

Cubic Spline Curves

Normal interpolation of data points

Cubic spline interpolation of data points

- Curves are piecewise cubic curves, made of pieces of different cubic curves glued together.
- The pieces are so well matched where they are glued that the gluing (c) (1) (1) Qutcolbwtoirsd Enginering

BY NC SA Design: Dr Nizar

B-spline Curves

- Almost the same like Bezier curves (Generalization of the Bezier curves) only that it had second order continuity (1 degree more than Bezier).
- B-spline used control points for the curves.
- It is a continuous cubic polynomial that interpolates (passes through) the control points.
- It produces smoother curve. The polynomial coefficients depend on all central points.

Example of Spline:

Flexible strip of metal used by draft persons to lay out the surfaces of airplanes, cars \& ships.

Representations of Geometry
Curve Representation

- Points
--- Straight Line segments
// - curve
\Rightarrow gives poor representation where radius of curvature. is Small

EXAMPLE

OPERATION MATRICES

Translation

$$
\begin{gathered}
P^{*}=P+d \\
{\left[\begin{array}{l}
x^{*} \\
y^{*} \\
z^{*}
\end{array}\right]=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]+\left[\begin{array}{l}
x_{d} \\
y_{d} \\
z_{d}
\end{array}\right]}
\end{gathered}
$$

OPERATION MATRICES

Rotation

$$
P^{*}=\left[\begin{array}{ll}
R &]
\end{array}\right] P
$$

About x axis

$$
\left[R_{x}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right]
$$

About y axis

$$
\left[R_{y}\right]=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right]
$$

About z axis

$$
\left[R_{z}\right]=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]
$$

OPERATION MATRICES

Scaling

$$
\begin{gathered}
P^{*}=[S] P \\
{\left[\begin{array}{c}
x^{*} \\
y^{*} \\
z^{*}
\end{array}\right]=\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & s_{z}
\end{array}\right]\left[\begin{array}{c}
x_{d} \\
y_{d} \\
z_{d}
\end{array}\right]}
\end{gathered}
$$

OPERATION MATRICES

Reflection

$$
P^{*}=[M] P
$$

Reflection through a principal plane ($x=0$ plane)

$$
\begin{aligned}
& {[M]=\left[\begin{array}{ccc}
m_{11} & 0 & 0 \\
0 & m_{22} & 0 \\
0 & 0 & m_{33}
\end{array}\right]} \\
& =\left[\begin{array}{ccc}
\pm 1 & 0 & 0 \\
0 & \pm 1 & 0 \\
0 & 0 & \pm 1
\end{array}\right]
\end{aligned}
$$

 100e (6) $\curvearrowleft \sqrt{2}$ Oルை
(CC) (ㄴ) Computer Aided Engineering Design: Dr Nizar

Thank you and Have a nice day!

Computer Aided Engineering Design: Dr Nizar

COMPUTER AIDED ENGINEERING DESIGN (BFF2612)

Dr. Nizar

