Chapter 11

Address Decoder

Expected Outcomes

Design of address decoder - partial and full
EInterpret and determine address ranges of memory map
Describe I/O interfacing concept such as I/O driver and memory mapped
EWrite a program for simple I/O interfacing

Introduction

- Normally, microprocessor is connected to several devices
- However, only one device can communicate with the processor at one time leaving other devices at high impedance
-To ensure this condition is established, address decoder is introduced
With this decoder, there will not be any devices fighting for control of common wire which may cause damaging to current flow

Address Decoder

-The role of the address decoder is to ensure one device can communicate with the processor at one time.
-This is done by placing all unselected devices into high impedance condition by deactivate enable pin of each device
-There are two type of decoders
E Full Address Decoder (FAD)

- All address buses of processor must be connected
- Partial Address Decoder (PAD)
- Only a few selected address buses are connected
-PAD using combinational circuit
EPAD using MSI chip

Full Address Decoder

EProcedure to design the address decoder for memory
EFor each memory device, determine the entire range of address
EThe first address
ESize of memory
-The last address
-For each memory device, determine the number of address lines connected to memory
-Determine the total address lines of the device
-The lower address lines of processor are connected directly to memory
-The rest of address lines are connected to the address decoder
-Design decoder circuit

Full Address Decoder

Example

Design a full address decoder for a 128kbyte RAM with the starting address of $\$ 480000$
[Solution

E Procedure to design the address decoder for memory

EFor each memory device, determine the entire range of address
-The first address
ESize of memory
-The last address
-For each memory device, determine the number of address lines connected to memory
-Determine the total address lines of the device
-The lower address lines of processor are connected directly to memory
-The rest of address lines can be considered to design the address decoder
Normally, higher address lines are used to distinguish devices
-The less number of lines involved, the simple the decoder circuit

Partial Address Decoder

Example: Design address decoder for following devices
-RAM (128kbyte) with initial address of $\$ 400000$
-ROM (32kbyte) with initial address of \$000000 El/O with address between $\$ 800000$ - $\$ 80001 \mathrm{~F}$

ESolution

ERAM is located between $\$ 400000$ - $\$ 49$ FFFF
-ROM is located between $\$ 000000$ - $\$ 007$ FFF
RAM: Address line A0-A16 are connected directly to memory
EROM: Address line A0-A14 are connected directly to memory
-I/O: Address line A0-A4 are connected directly to I/O device
EChoose the minimum address lines (higher address) to select these devices : A23 and A22

Partial Address Decoder

-The most common address decoder using MSI technology are

- 74139
(2-4 decoder)
-74138
(3-8 decoder)
-74154
(4-16 decoder)

Truth Table

Inputs			Outputs			
$\overline{\mathrm{E}}$	$\mathbf{A}_{\mathbf{0}}$	$\mathbf{A}_{\mathbf{1}}$	$\overline{\mathbf{O}}_{\mathbf{0}}$	$\overline{\mathbf{O}}_{\mathbf{1}}$	$\overline{\mathbf{O}}_{\mathbf{2}}$	$\overline{\mathrm{O}}_{\mathbf{3}}$
H	X	X	H	H	H	H
L	L	L	L	H	H	H
L	H	L	H	L	H	H
L	L	H	H	H	L	H
L	H	H	H	H	H	L

H=HIGH Voltage Level
L = LOW Voltage Level
X Immaterial

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

74138

ENABLE INPUTS			SELECT INPUTS			OUTPUTS							
G1	G2A	$\overline{\mathrm{G}} 2 \mathrm{~B}$	C	B	A	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7
X	H	X	X	X	X	H	H	H	H	H	H	H	H
X	X	H	X	X	X	H	H	H	H	H	H	H	H
L	X	X	X	X	X	H	H	H	H	H	H	H	H
H	L	L	L	L	L	L	H	H	H	H	H	H	H
H	L	L	L	L	H	H	L	H	H	H	H	H	H
H	L	L	L	H	L	H	H	L	H	H	H	H	H
H	L	L	L	H	H	H	H	H	L	H	H	H	H
H	L	L	H	L	L	H	H	H	H	L	H	H	H
H	L	L	H	L	H	H	H	H	H	H	L	H	H
H	L	L	H	H	L	H	H	H	H	H	H	L	H
H	L	L	H	H	H	H	H	H	H	H	H	H	L

Function Table																					
Inputs						Outputs															
G1	G2	D	C	B	A	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
L	L	L	L	L	L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	H	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	L	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H
L	L	L	H	L	L	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H
L	L	L	H	L	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H	H
L	L	L	H	H	L	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H	H
L	L	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H	H
L	L	H	L	L	L	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H	H
L	L	H	L	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H	H
L	L	H	L	H	L	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H	H
L	L	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H	H
L	L	H	H	L	L	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H	H
L	L	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H	H
L	L	H	H	H	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L	H
L	L	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	L
L	H	X	X	X	X	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
H	L	x	X	X	X	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H
H	H	X	X	X	X	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H	H

Example: Design address decoder for following devices ERAM (128kbyte) with initial address of $\$ 400000$ - ROM (32kbyte) with initial address of $\$ 000000$ —l/O with address between $\$ 800000-\$ 80001 \mathrm{~F}$
ESolution:

R/W* Control Logic Bus

EControl logic for R/W* memory operation

UDS	LDS	R/W	UPRD	LORD	UPWR	LOWR
0	0	0	1	1	0	0
0	0	1	0	0	1	1
0	1	0	1	1	0	1
0	1	1	0	1	1	1
1	0	0	1	1	1	0
1	0	1	1	0	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

Interface With Memory

Circuit design
from previous example

Interface With Latch

Elf even address is chosen (simplified circuit)

- If odd address is chosen (simplified circuit)

Interface With Buffer

- If odd address is chosen

-lf even address is chosen

LED	EQU	\$80000
REPEAT	MOVE . B	\#SFF, LED
	BSR	DELAY
	MOVE . B	\# O, LED
	BSR	DELAY
	BRA	REPEAT
DELAY	MOVE.L	\#\$100000, D1
AGAIN	SUBQ.L	\#1, D1
	BNE	AGAIN
	RTS	

More Examples.

- Write a program to display LED dancing if the RESET switch is pressed. Assume the RESET switch is active low \& is located at the LSB of address $\$ 90000$

LED	EQU	$\$ 80000$
SW1	EQU	$\$ 90000$
SCAN	MOVE.B	SW1, D0
	ROR.B	\#1, D0
	BCS	SCAN
AGAIN	MOVE.B	\#\$AA, LED
	BSR	DELAY
	MOVE.B	\#\$55, LED
	BSR	DELAY
	BRA	AGAIN

- Write a program to display an upward counter ($0,1,2, \ldots . .8,9,0 .$.) on 7 segment display continuously. Assume the address for 7 segment $\$ 400001$

SEGMENT	EQU	\$400001
REPEAT	MOVEA.L	AO, \#DATA
	CLR.W	DO
AGAIN	MOVE.B	$0($ AO,DO, , SEGMENT
	ADDQ.W	\#1,D0
	CMPI.W	\#10,D0
	BNE	AGAIN
	BRA	REPEAT
	DC.B

Self-Test

- Exercise

Design a partial decoding circuit that based on memory map given. The design must be based on a (i) 74139 (ii) 74138 and (iii) 74154 . Show all the detail of your connections and address ranges for each device.

2×2764
2×6264
SWITCH
MOTOR
LED
7-SEGMENT
LCD

- Exercise

Write a program to read a byte of data from address of $\$ 10000$.
The data then are inverted and rotate to the right twice and stored back to its original address

- Exercise

If two EPROM 27128 are used and the beginning address of the EPROM is $\$ 10000$, what is the end address of EPROM?
E Exercise
If address lines of A23-A21 are connected respectively to C, B and A of 74138 with C is MSB, what is the possible address range for the device if $\mathrm{Y} 3^{*}$ is chosen?

Selif-Test

- Exercise

Write a complete program to meet following requirements,
-If switch 1 is pressed, the LEDs will blinking continuously
-If switch 2 is pressed, the LEDs will display free running pattern continuously

- If switch 3 is pressed, the LEDs will display dancing pattern continuously
-If switch 4 is pressed, the program is terminated

Assume that the location of LEDs and switch are $\$ 600000$ and $\$ 800000$ respectively

