

Chapter 10

Memory & Simple I/O Interfacing

Expected Outcomes

Explain the importance of tri-state devices in microprocessor system

- Distinguish basic type of semiconductor memory and their applications
- Relate the address and data bus for various memories
- Describe I/O interfacing concept such as I/O driver and memory mapped
 Relate the role of latch and buffer in interfacing with simple I/O devices

Tri-state Devices

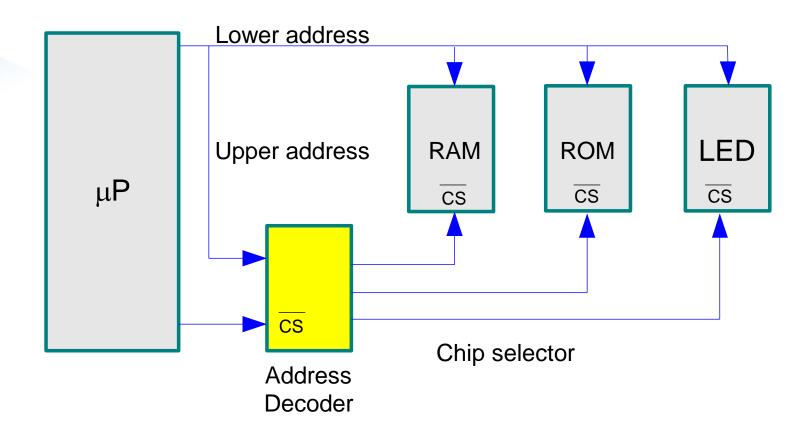
Any devices connected to a microprocessor should configure in tristate

- This is because only one device can communicate with the processor at one time leaving other devices at high impedance
- Devices with tristate outputs have an enable input such as OE, CS, E, etc
- With this configuration, there will not be any devices fighting for control of common wire which may cause damaging to current flow

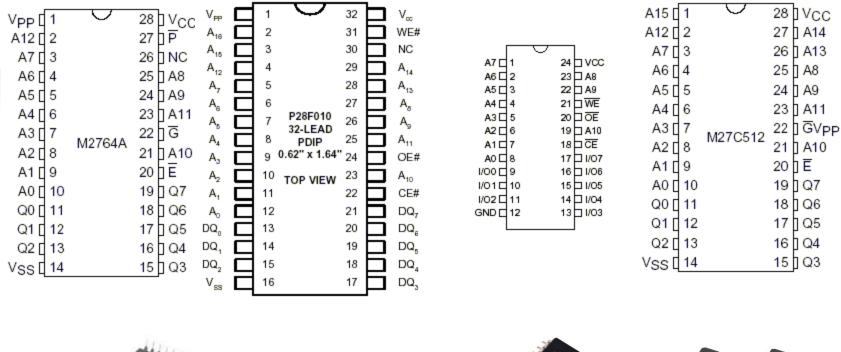
Common devices connected to µP

Address decoder

Memory (ROM/RAM)


Input devices such as keyboard, mouse, switch etc

Output devices such as printer, monitor, LED, LCD


Tri-state Devices

Memory

Memory

Memory system is used to store data and instruction

Type of memory

ROM (Read Only Memory)

- Nonvolatile data remains even the power is off
- Normally used to store vectors, self-test routine, monitor program, common subroutine and etc
- Special device is required to store program in ROM

RAM (Random Access Memory)

- Volatile type as data are lost as the power is off
- Temporary storage and normally used for operation and application system

ROM

Programmable Maskable ROM

- Very cheap and normally is programmed in factory for mass production
- One-time written and widely used in game cassette

Programmable ROM (PROM)

- One-time written and can be programmed by using PROM programmer
- One-time PROM (OTPROM)
 - Cheap version of PROM with plastic packed

Flash Memory

ROM

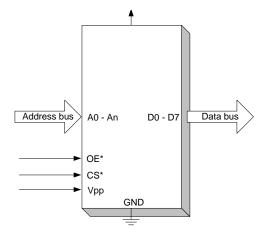
Like EEPROM, but erasing process involves block-by-block
 Common in digital camera & MP3

EPROM

Common industrial EPROM

Common industrial EEPROM

2816


2864

- 2 kbyte (2048 x 8 bits) 4 kbyte (4096 x 8 bits) 8 kbyte (8192 x 8 bits) 16 kbytes (16384 x 8 bits)
- 32 kbytes (32768 x 8 bits)

2 kbyte (2048 x 8 bits)

8 kbyte (8192 x 8 bits)

Part No	Capacity	Org	Access	Pins	Vpp
2716	16K	2Kx8	450ns	24	25V
2732	32K	4Kx8	450ns	24	25V
27C32-1	32K	4Kx8	450ns	24	25V CMOS
2764-20	64K	8Kx8	200ns	28	21V
27C64-12	64K	8Kx8	120ns	28	12.5V CMOS
27128-25	128K	16Kx8	250ns	28	21V
27C256-15	256K	32Kx8	150ns	28	12.5V CMOS
27C512-15	512K	6Kx8	150ns	28	12.5V CMOS
27C010-15	1024K	128Kx8	150ns	32	12.5V CMOS
27C020-15	2048K	256Kx8	150ns	32	12.5V CMOS
27C040-15	4096K	512Kx8	150ns	32	12.5V CMOS

EEPROM & Flash Chip

Some common EEPROM

Part No	Capacity	Org	Speed	Pins	Vpp
2816A-25	16K	2Kx8	250ns	24	5V
2864A	64K	8Kx8	250ns	28	5V
28C64A-25	64K	8Kx8	250ns	28	5V CMOS
28C256-15	256K	32Kx8	150ns	28	5V

Some common Flash Chips

Part No	Capacity	Org	Speed	Pins	Vpp
28F256-20	256K	32Kx8	200ns	32	12V CMOS
28F010-15	1024K	128Kx8	150ns	32	12V CMOS
28F020-15	2048K	256Kx8	150ns	32	12V CMOS

EPROM Pin Function

A0-An (Address Bus)

Address bus directly connected to lower address of microprocessor

DO-Dn (Data Bus)

Data bus directly connected to data bus

CS* (Chip Select)

To activate EPROM and connected to address decoder

OE* (Output Enable) ROM place data into data bus

EPROM Pin Function

Vpp

Used by EPROM programmer to change bit in the chipPlace into high when it is not used

CS*	OE*	Functions
1	0	IC disable with minimum power consumption
1	1	IC disable with minimum power consumption
0	0	Read mode; data are placed on data bus
0	1	Wait state mode; data are placed on the bus when OE* is activated

EPROM Memory Chip

Examples of Parallel EPROMs

	2716	2732	2764	27128	27256	27512		2716	2732	2764	27128	27256	27512
1 2 3 4 5 6 7 8 9 10 11 12 13 14	A7 A6 A5 A4 A3 A2 A1 A0 D0 D1 D2 GND	A7 A6 A5 A4 A3 A2 A1 A0 D0 D1 D2 GND	Vpp A12 A7 A6 A5 A4 A3 A2 A1 A0 D0 D1 D2 GND	Vpp A12 A7 A6 A5 A4 A3 A2 A1 A0 D0 D1 D2 GND	Vpp A12 A7 A6 A5 A4 A3 A2 A1 A0 D0 D1 D2 GND	A15 A12 A7 A6 A5 A4 A3 A2 A1 A0 D0 D1 D2 GND	28 27 26 25 24 23 22 21 20 19 18 17 16 15	Vcc A8 A9 A11 OE* A10 CE D7 D6 D5 D4 D3	Vcc A8 A9 A11 OE* A10 CE D7 D6 D5 D4 D3	Vcc PGM N.C A8 A9 A11 OE* A10 CE D7 D6 D5 D4 D3	Vcc PGM A13 A8 A9 A11 OE* A10 CE D7 D6 D5 D4 D3	Vcc A14 A13 A8 A9 A11 OE* A10 CE D7 D6 D5 D4 D3	Vcc A14 A13 A8 A9 A11 OE*/Vpp A10 CE D7 D6 D5 D4 D3

RAM

Two basic types of RAM

Static RAM (SRAM)

Easy to be used and requires an internal flip-flop to store each bit
 Need 4 – 6 transistor for each FF and suitable for small system
 4 times compact than SRAM with the same size
 Normally used in personal computer

Dynamic RAM (DRAM)

- Cheaper as dynamic RAM uses a single transistor that acts like a charged capacitor to store each bit
- Since the charge leaks, a DRAM must use refresh circuit to recharge the capacitor periodically (typically every 2 ms)

RAM & NVRAM

Performance difference

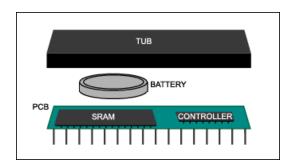
- DRAM contain more data per chip size
- SRAM is faster and simpler
- NV-RAM (Non-volatile RAM) is introduced to allow the CPU to read and write to it and not lost the content even the power is turned off
- To retain the content, the NVRAM chip internally
 - Uses extremely power efficient CMOS
 - Uses an internal lithium battery as backup energy
 - ■Uses intelligent control circuitry to monitor Vcc pin and activates internal power if needed
- Thus the NV-RAM is expensive because it must provide the facilities in a single IC

SRAM & DRAM

Examples of SRAM & DRAM

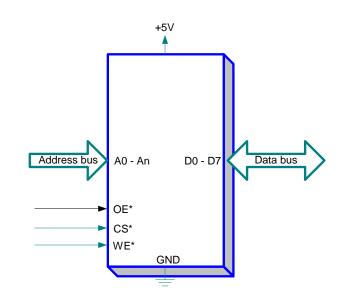
Part No	Capacity	Org	Speed	Pins	Vpp
6116P-1	16K	2Kx8	100ns	24	CMOS
6116LP-3	16K	2Kx8	150ns	24	CMOS
6264P-10	64K	2Kx8	100ns	28	CMOS
62256LP-10	256K	32Kx8	100ns	28	Low Power CMOS
62256LP-12	256K	32Kx8	120ns	28	Low Power CMOS

Part No	Capacity	Org	Speed	Pins
4164-15	64K	64Kx1	150ns	16
41256-15	256K	256Kx1	150ns	16
511000P-8	1M	1Mx1	80ns	18



NV-RAM from Dallas Semiconductor

Part No	Capacity	Org	Speed	Pins
DS1220Y-150	16K	2Kx8	150ns	26
DS1225AB-150	64K	8Kx8	150ns	28
DS1230Y-85	256K	32Kx8	85ns	28



RAM

Common industrial RAM 6116 2 kbyte (2048 x 8 bits) 6164/6264 8 kbyte (8192 x 8 bits) 43256/6625 32 kbytes (32768 x 8 bits)

A0-An (Address Bus) - Address bus directly connected to lower address of microprocessor

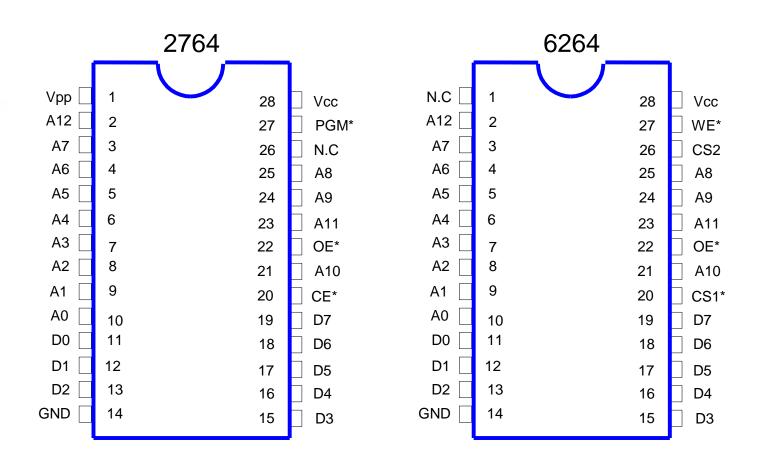
DO-Dn (Data Bus) - Data bus directly connected to data bus

CS* (Chip Select) - To activate EPROM and connected to address decoder

OE* (Output Enable) - RAM places data into data bus

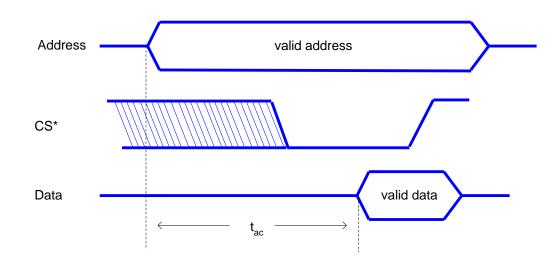
WE* (Write Enable) - RAM stores data into cell

■ The role of CS*, OE* and WE*


RAM

CS*	OE*	WE*	Functions				
1	Х	Х	C disable with minimum power consumption				
0	0	0	Undefined				
0	0	1	Read mode; data are placed on data bus				
0	1	0	Write mode; data are latched				
0	1	1	Wait state mode				

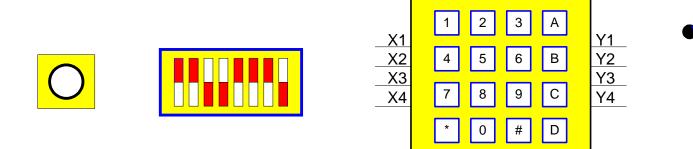
2764 vs 6264



Access Time

- The performance of memory chips normally are based on access time
- Access time (t_{ac}) is defined as time taken for the memory to place data onto the data bus as the read signal is received

Simple I/O Devices



Input Devices

- Most input devices do not possess the tristate configuration
- Normally they are connected to other tristate devices such as buffer to ensure proper interface with μP
- Common input devices
 - Switches (reset, SPST, SPDT etc)
 - Keypad
 - Sensors

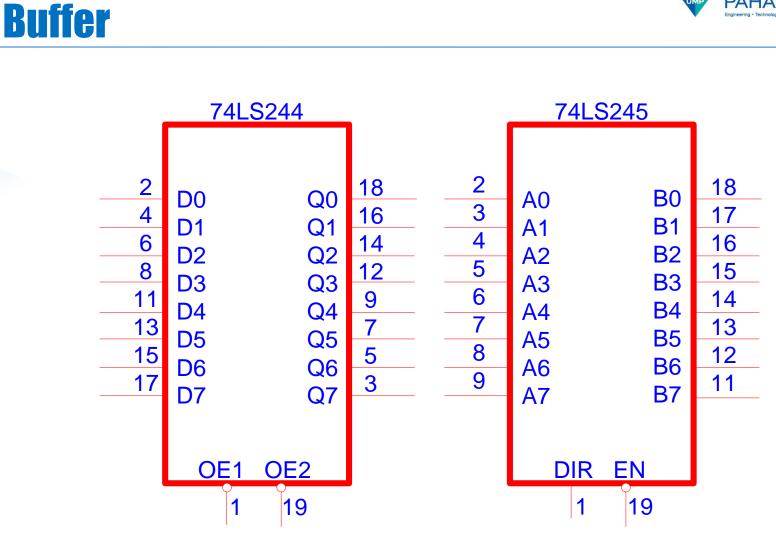
0

0

Buffer

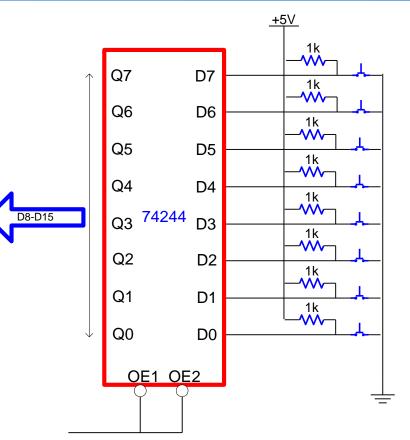
Buffer is a circuit that allows any logics onto the data bus

74LS244 unidirectional tri-state buffer


- If OE=0, input is allowed to pass through
- If OE=1, output is placed in high impedance

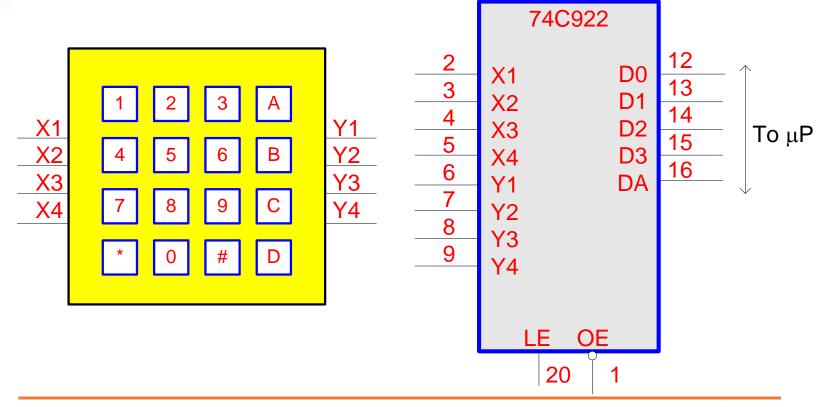
74LS245 bidirectional buffer

- A.k.a transceiver
- Data direction is determined by DIR
- If DIR=0, data movement is from A to B
- If DIR=1, data movement is from B to A



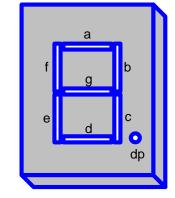
Simple Input Interface

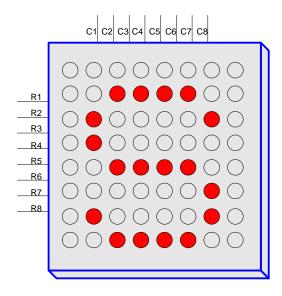
- Simple inputs connection with a buffer
- Enable pins (OE1* & OE2*) will activate the buffer and normally are connected to address decoder



Keypad Encoder

When a keypad is used in a system, a keypad encoder (74922) is required to facilitate the program



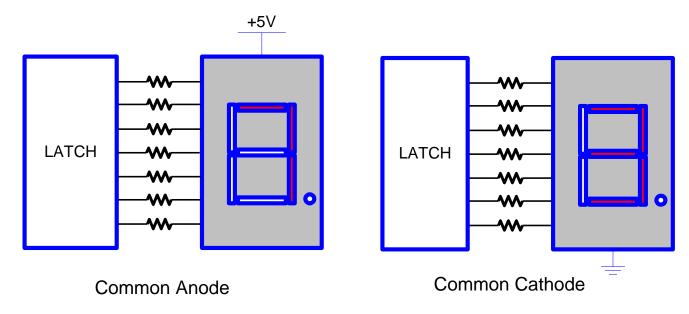


Output Devices

- Like input devices, output devices do not possess the tristate configuration
- They are connected to other tristate devices such as latch for proper interface with processor
- Common output devices
 - Light Emitting Diode (LED)
 - Seven Segment Display
 - Dot Matrix

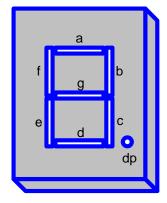
LED

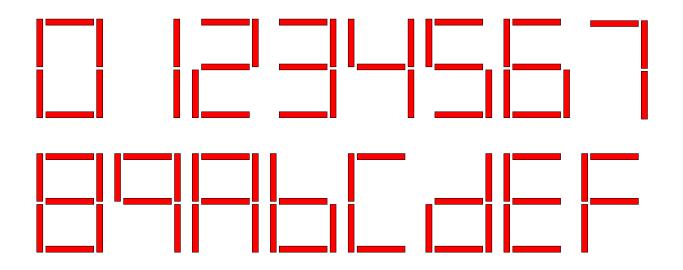
LED is the most common output device used in microprocessorbased system due its simplicity & cost



7-Segment Display

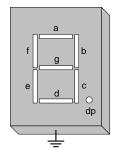
There two type configurations
 Common Anode
 Common Cathode





7-Segment Display

Common CathodeCommon Anode



7-Segment Display

Common Cathode

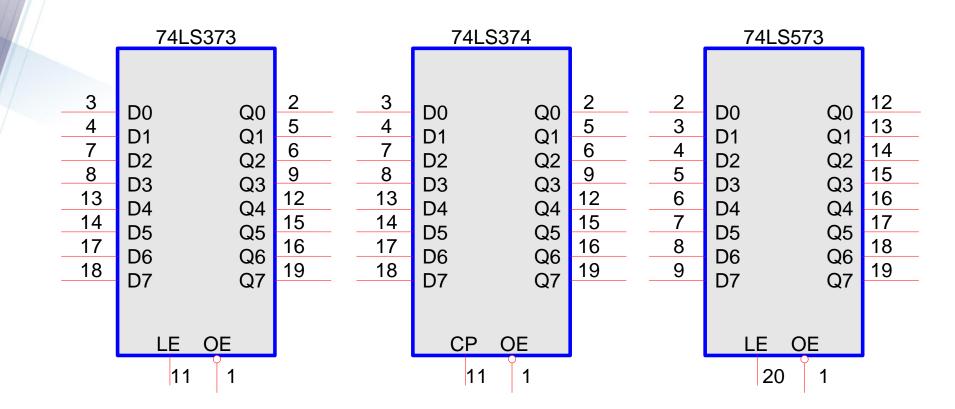
	а	b	с	d	е	f	g
0	1	1	1	1	1	1	0
1	0	1	1	0	0	0	0
2	1	1	0	1	1	0	1
3	1	1	1	1	0	0	1
4	0	1	1	1	0	0	1
5	1	0	1	1	0	1	1
6	1	0	1	1	1	1	1
7	1	1	1	0	0	0	0

	а	b	с	d	е	f	g
8	1	1	1	1	1	1	1
9	1	1	1	0	0	1	1
А	1	1	1	0	1	1	1
В	0	0	1	1	1	1	1
С	1	0	0	1	1	1	0
D	0	1	1	1	1	0	1
Е	1	0	0	1	1	1	1
F	1	0	0	0	1	1	1

Latch

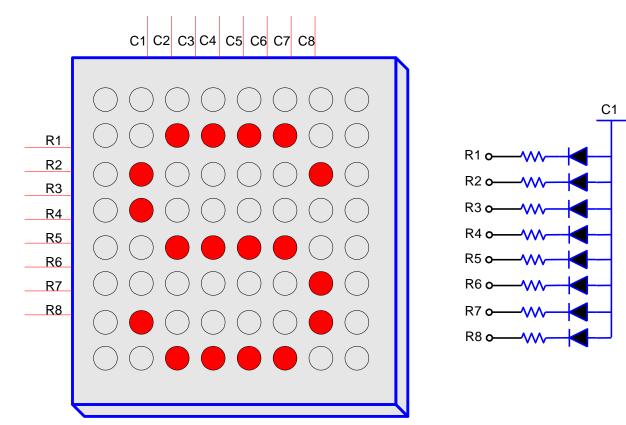
Latch is a circuit that capture value at the input

74LS373 transparent latch


- During LE=1, Q=D
- During LE=0, Q hold D during negative edge
- Another version is 74LS573 where the difference is in pin configuration

■74LS374 edge triggering

- During positive transition at CP, data is transferred from D to Q
- Another version is 74LS574 where the difference is in pin configuration


Latch

Dot Matrix

A multi-purpose output display, dot matrix is another common output device

Self-Test

Determine the number of address pins and memory capacity of the following EPROM

Part No	Capacity (bytes)	Address Pins
TMS27C64		
HD2716		
NM27C128		
62256LP-10		
27C010-15		
27C040-15		
27512-25		

Universiti Malaysia PAHANG Ergineergi - Technology - Greativy

Self-Test

Exercise

For ROM chip 27128, find the number of data and address pins. In your opinion what is the minimum pin configuration of the chip

Exercise

Discuss the number of pins for addresses in (i) 2 kbytes RAM (ii) 512 bytes of RAM

Exercise

Explain the difference between EEPROM and flash memory

Exercise

Which memory is used as cache memory in the PC?

Universiti Malaysia PAHANG Engineering - Technology - Greativy

Self-Test

Exercise

Explain the role of OE*, CS*, WE* pins in RAM

Exercise

Why do we need to use latch instead of connecting the output device (such as 7-segment display) directly to the CPU?

Exercise

What is access time for a memory? Briefly describe the important of fast access time in a microprocessor system by giving an example

