Universiti Malaysia PAHANG
Engineering • Technology • Creativity

FACULTY OF ELECTRICAL \& ELECTRONICS ENGINEERING FINAL EXAMINATION

COURSE	$:$	INTELLIGENT CONTROL
COURSE CODE	$:$	BEE4333
LECTURER	$:$	DR. DWI PEBRIANTI
		DR. NOR MANIHA ABDUL GHANI
DATE	$:$	2015
DURATION	$:$	3 HOURS
SESSION/SEMESTER	$:$	SESSION 2015/2016 SEMESTER II
PROGRAM CODE	$:$	BEE

INSTRUCTIONS TO CANDIDATES:

1. This question paper consists of FOUR (4) Questions. Answer ALL questions.
2. All answers to a new question should start on new page.
3. All the calculations and assumptions must be clearly stated.
4. Candidates are not allowed to bring any material other than those allowed by the invigilator into the examination room.

EXAMINATION REQUIREMENTS:

1. Graph paper

QUESTION 1

(a) Expert system is most widely used and applied successfully in Artificial Intelligence, AI technology. It can either support decision makers or completely replace them.
(i) Define the term 'expert system'.
[2 Marks]
(ii) State why industries need AI technology. Name TWO (2) examples of the industry.
[4 Marks]
(iii) Rule-based expert system is represented as a series of rules or type of knowledge representation, can be defined as an IF-THEN structure which are relatively easy to understand. Draw the basic structure of a rule-based expert system.
[8 Marks]
(b) An automated sorting machine can sort any combination of common domestic plastic bottles. A conveyer is used to move the bottles to specified location depending on the color. An infrared sensor is used to detect the color of each bottle. There are main conveyers connected with other three conveyers to move the bottles into specified box. Detail operations follow these conditions:

Green bottles must be placed into green box.
Red bottles must be placed into red box.
Yellow bottles must be placed into yellow box.

Conveyer A goes to green box.
Conveyer B goes to red box.
Conveyer C goes to yellow box.

Condition 2

Summary of the operations can be simplified as follows:
(Green bottles \rightarrow conveyer A \rightarrow green box)
(Red bottles \rightarrow conveyer B \rightarrow red box)
(Yellow bottles \rightarrow conveyer $\mathrm{C} \rightarrow$ yellow box)
(i) Construct TWO (2) strategy rules to ensure the specified bottles goes to the correct box.
(ii) In each rule in (i), list THREE (3) conditions/antecedents, and ONE (1) consequence.
[11 Marks]
[CO1, PO1, C3]

QUESTION 2

(a) Consider two fuzzy sets, Error, e and Change of Error, Δe :

Error, $e=\{\mathrm{e} 1 / 0.1, \mathrm{e} 2 / 0.2, \mathrm{e} 3 / 0.4, \mathrm{e} 4 / 0.6, \mathrm{e} 5 / 0.8, \mathrm{e} 6 / 1\}$
Change of Error, $\Delta e=\{\Delta e 1 / 1, \Delta e 2 / 0.6, \Delta e 3 / 0.4, \Delta e 4 / 0.3, \Delta e 5 / 0.1\}$

Determine the results of following combinations for these two sets:
(i) $e \cup \Delta e$
(ii) $e \cap \Delta e$
[6 Marks]
(b) A dynamic control system has two input variables, ' x ' and ' y ' while the control output is ' z '. The ' x ' update of this equation in discrete form is:

$$
x_{k+1}=k_{1} x_{k}+\left[1-k_{2}\right]\left[\begin{array}{l}
y_{k} \\
z_{k}
\end{array}\right]
$$

where k_{1}, k_{2} are constants. The membership functions for x, y and z are shown in

Figure 2.1:

Figure 2.1

The rule-base for the fuzzy controller is given in Table 2.1.

Table 2.1

Road	UP	LEVEL	DOWN
Ition Speed	HIGH	Low Medium	Low Medium
OK	High Medium	Medium	Low Medium
LOW	High	High Medium	High Medium

Taking initial conditions, $x_{0}=52.5$ and $y_{0}=-5$, demonstrate graphically how you would simulate one cycle of this closed loop fuzzy control system using Mamdanistyle inference. Use only estimates in COG defuzzification method.

Detach graph paper together with the answer script.
[CO2, P10, C4]

QUESTION 3

(a) Artificial Neural Network (ANN) is an intelligence technique that is adapted from the working principle of human brain. Draw the model of the human brain. Give explanation on the working principle of this system.
[5 Marks]
(b) Artificial Neural network can be used for the classification process of pure honey. The odor profile of the pure honey is obtained by using a FOUR (4) array of gas sensors. This profile will be pre-processed to obtain the normalization data of the resistance values obtained from each sensor. The pre-processed data will be the input for a backpropagation neural network that has ONE (1) neuron in the hidden layer. Table 3.1 shows the training data set used in the classification process. Target value 1 shows that the odor is coming from pure honey.

Table 3.1 Training data set for classification of pure honey

Sensor 1	Sensor 2	Sensor 3	Sensor 4	Target
0.51	0.29	0.47	0.47	1
1	1	1	1	1
0.37	0.36	0.34	0.34	0
0.23	0.23	0.20	0.20	0

Assume that the weight between input layer and hidden layer has a format of $w_{i j}$. For the initial condition, when i is an odd number, the associated weight value is 0.3 . And when i is an even number, the associated weight value is - 0.1 . Additionally, weight between hidden layer and output layer is 0.5 .
(i) Draw the model of the system. Give the details of each weight value in the network.
[2 Marks]
(ii) Calculate the output of the system, by using the FIRST (1 $\mathbf{1}^{\text {st }}$) data pattern. [NOTED : use number with THREE (3) decimal places]
(iii) Calculate the new weight of network by using result in (ii).
[NOTED : use number with THREE (3) decimal places]
[14 Marks]
(iv) Draw the new network of the system.
[2 Marks]
[CO2, PO3, C4]

The information for the Neural Networks configurations is as follows.

1. Sigmoid function; $f(x)=\left(1+e^{-x}\right)^{-1}$
2. Learning rate, η is 0.5 and momentum term is, α is 0.4 .
3. The formula for updating the weight values between input and hidden layer is

$$
\begin{gathered}
\Delta w_{i j}(t+1)=\eta \delta_{j} O_{i}+\alpha \Delta w_{i j}(t) \\
w_{i j}(t+1)=w_{i j}(t)+\Delta w_{i j}(t+1)
\end{gathered}
$$

4. The formula for updating the weight values between hidden and output layer is

$$
\begin{gathered}
\Delta w_{j k}(t+1)=\eta \delta_{k} O_{j}+\alpha \Delta w_{j k}(t) \\
w_{j k}(t+1)=w_{j k}(t)+\Delta w_{j k}(t+1)
\end{gathered}
$$

5. O_{i} and O_{j} are output of the neuron after we apply the sigmoid function.
6. δ_{j} is error signal equations between hidden (j) and input (i) layer

$$
\delta_{j}=O_{j}\left(1-O_{j}\right) \sum \delta_{k} w_{j k}
$$

7. δ_{k} is error signal equations between output (k) and hidden (j) layer

$$
\delta_{k}=O_{k}\left(1-O_{k}\right)\left(t_{k}-O_{k}\right)
$$

QUESTION 4

(a) M. Negnevitsky defines Genetic Algorithm (GA) as a class of stochastic search algorithms based on biological evolution. There are THREE (3) simplest operators in GA; selection, crossover and mutation. Define those THREE (3) operators.
[2 Marks]
(b) Genetic Algorithm (GA) is used for optimizing the appropriate values of weight in a Neural Network for solving an OR problem with THREE (3) inputs. The network is shown in Figure 4.1. A sigmoid function is applied at the output layer. The training data set is shown in Table 4.1.

Figure 4.1 : Neural Network for OR Problem

Table 4.1 : Data set for training process

Data No.	INPUT			OUTPUT
	X1	X2	X3	Yd
$\# 1$	1	1	0	1
$\# 2$	1	1	1	1
$\# 3$	0	0	1	1
$\# 4$	0	0	0	0
$\# 5$	0	1	0	1
$\# 6$	0	1	1	1
$\# 7$	1	0	0	1
$\# 8$	1	0	1	1

The population in this problem is a collection of binary set that represents the values of weight from input to output layer. The format of the population is shown in Figure 4.2. The weight between all layers has range between -1 and 1. The initial population is listed in Table 4.2.

Figure 4.2 Format of GA Population to Solve OR Problem

Table 4.2 Initial Population / Individuals

Population	Chromosome
p_{1}	100001101110
p_{2}	111010111011
p_{3}	11111101110
p_{4}	11010101110

(i) Calculate the output value of L_{k} for all population using the FIRST ($\mathbf{1}^{\text {st }}$) data pattern. (NOTE : Sigmoid function is represented as $\left.f(x)=\left(1+e^{-x}\right)^{-1}\right)$
(ii) Calculate the absolute error for each population. Arrange the population from the minimum error (NOTE : called the fittest individual) to the maximum error (NOTE : called the less fit individual).
(iii) For the $1^{\text {st }}$ generation do the following :
a) Cross the fittest two individuals using one-point crossover at the FIFTH (5 $5^{\text {th }}$) gene.
b) Cross the SECOND ($\mathbf{2}^{\text {nd }}$) and THIRD ($\mathbf{3}^{\text {rd }}$) fit individuals using a twopoint crossover (point ' \boldsymbol{c} ' and ' \boldsymbol{f} ').
(iv) Find the error of the new population obtained in (iii).
(v) Evaluate the performance after the FIRST (1 ${ }^{\text {st }}$) generation by considering the average of mean error.
[23 Marks]
[CO3, PO2, C4]

END OF QUESTION PAPER

